MHB What mistake did I make while solving the Ferris wheel trig problem?

  • Thread starter Thread starter NeedHelp27
  • Start date Start date
  • Tags Tags
    Trig Wheel
AI Thread Summary
The discussion revolves around solving a trigonometric problem related to a Ferris wheel's height over time. The original attempt involved modeling the height with a cosine function, but the user encountered a domain error when isolating the variable. The correct approach involves adjusting the equation to reflect the Ferris wheel's height above ground, leading to the equation f(t) = -25cos(π/20 t) + 30. This formulation correctly accounts for the wheel's dimensions and position, allowing for accurate calculations of the rider's height at specific times. The key mistake was in the initial setup of the cosine function and its parameters.
NeedHelp27
Messages
1
Reaction score
0
Hello, all. For homework, we got a problem that reads as follows: A Ferris wheel 50 ft in diameter makes one revolution every 40 sec. If the center of the wheel is 30 ft above the ground, how long after reaching the low point is a rider 50 ft above the ground? Our teacher said to model the situation with an equation.

When I tried to go about doing this, I drew a graph showing the person's height, at it ended up being the cosine graph shifted up 5 and over so that a low point was on the y-axis (0,5). Next, I tried to write the equation in the form f(x)=acos(bx+c)+d. I did (max value - min value)/2 = (55-5)/2=25 to find a. Then, because one revolution takes 40 seconds, I solved 2pi/b=40 for b and got b=pi/20. The graph is shifted 5 up, so d-5. That gave me f(x)=25cos((pix)/20+c)+5. I also have the point (0,5) on the graph, so I can plug it into get c. f(0)=5=25cos(c)+5. C ended up being pi/2.

Then I went to solve the problem.
f(t)=50=25cos((pix)/20+pi/2)+5.
When I finally isolated x, I got a domain error. Where did I go wrong?
 
Mathematics news on Phys.org
If we let the point in time (in seconds) where the rider is at the lowest point be $t=0$, then we could write:

$$f(t)=-25\cos\left(\frac{\pi}{20}t\right)+30$$

Now try solving the question. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top