- #1
Mattbro
- 4
- 0
Consider main-belt chondritic asteroids. How large should be an asteroid so that the
maximal internal temperature exceeds the melting temperature of ice? Of rocks? For your
calculations, use the present-day chondritic heat production w = 4×10-12 W kg-1, typical
thermal conductivity of slightly fractured rock k = 2 W K-1m-1, and density r = 2700 kg
m-3 representative of chondritic materials. Make (and explain) a reasonable guess about
the surface temperature Ts and melting temperatures Tm of ice and rocks
maximal internal temperature exceeds the melting temperature of ice? Of rocks? For your
calculations, use the present-day chondritic heat production w = 4×10-12 W kg-1, typical
thermal conductivity of slightly fractured rock k = 2 W K-1m-1, and density r = 2700 kg
m-3 representative of chondritic materials. Make (and explain) a reasonable guess about
the surface temperature Ts and melting temperatures Tm of ice and rocks