MHB What to include on a first elementary number theory course?

AI Thread Summary
A first elementary number theory course should include topics such as modular arithmetic, rational approximations, and applications like public-key cryptography. The course should be structured to motivate students, leveraging resources like "An Introduction to Number Theory" by Graham Everest and Thomas Ward, and "Roots to Research" by J.D. Sally and P.J. Sally, Jr. While public-key cryptography is an engaging application, it may require a separate course due to its complexity. Additionally, the concept of squaring the circle can be introduced, although it leans more towards geometry. Overall, a focus on modular arithmetic is essential for a comprehensive understanding of elementary number theory.
matqkks
Messages
280
Reaction score
5
I have to teach a course in elementary number theory next academic year. What topics should be included on a first course in this area? What is best order of doing things? The students have a minimum background in proof but this is a second year undergraduate module.
I am looking for applications which will motivate the student in this subject.
Are there good resources on elementary number theory?
 
Mathematics news on Phys.org
I like chapter 4 "Rational Approximations" from the book "Roots to Research: A Vertical Development of Mathematical Problems" by J.D. Sally and P.J. Sally, Jr. It can be downloaded from the AMS site by clicking on the "Preview Material". The book description says that it is for students of all levels starting from high school. I myself studied this material as an undergraduate, but also in a university-preparatory school.

Another interesting topic that touches number theory is squaring the circle. It took us a third of a semester during the fourth year in college to cover the theorem that $\pi$ is transcendental, so this fact should probably be given without a proof. However, it is interesting why every line segment built from a segment of length 1 using only compass and straightedge has an algebraic length. I don't think I have ever studied a rigorous proof. However, this may be more of a geometrical than number-theoretical theorem.

Finally, I would look at public-key cryptography, but I don't know if it is possible to omit enough details to make it into both an accessible and a rigorous course.
 
Fernando Revilla said:
Perhaps the the following book by Graham Everest and Thomas Ward will provide you good ideas

An Introduction to Number Theory
From the title page:

"An Introduction to
Number Theory

With 16 Figures"

I wanted to exclaim, "Yeah, this is not geometry, baby! You should be happy with just a handful of pictures". (Smile) Also, the beginning of "Alice in Wonderland" comes to mind.

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, `and what is the use of a book,' thought Alice `without pictures or conversation?'
 
Evgeny.Makarov said:
Finally, I would look at public-key cryptography, but I don't know if it is possible to omit enough details to make it into both an accessible and a rigorous course.

I don't think so. It's fun and all as an example of applications of number theory but without computational complexity theory and an actual course in cryptography the students are going to be lost. Cryptography needs its own separate course IMHO

Also, on topic: modular arithmetic. The single most important tool. No elementary number theory course is complete without it.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top