I What was the four-momentum meant to include?

  • I
  • Thread starter Thread starter dsaun777
  • Start date Start date
  • Tags Tags
    Mass Relativity
dsaun777
Messages
296
Reaction score
39
Hello,
was the four-momentum of relativity, Pν, supposed to include all mass and energy contributions from every field i.e. electromagnetic, strong, gravitational...
Or is it just the momentum of what was known in Einstein's time?
 
Physics news on Phys.org
Four momentum only works for point particles, or things you can approximate as point particles, but includes every contribution to their energy and momentum. For example, most of the mass of a proton is due to the binding energy of the quarks, so there's an awful lot of strong force contributing to the ##m## in a "ball of mass ##m##" that you would treat as a point particle.

For fields and the like (when you can't lump them in to a point particle) you'd need a stress-energy tensor.
 
  • Like
  • Informative
Likes Dale, topsquark and berkeman
Ibix said:
Four momentum only works for point particles, or things you can approximate as point particles, but includes every contribution to their energy and momentum. For example, most of the mass of a proton is due to the binding energy of the quarks, so there's an awful lot of strong force contributing to the ##m## in a "ball of mass ##m##" that you would treat as a point particle.

For fields and the like (when you can't lump them in to a point particle) you'd need a stress-energy tensor.
Can you then contract and integrate the stress-energy tensor to arrive at some four-momentum? I suppose it depends on what kind of spacetime you are working in right?
 
If I have this straight, if you have a family of observers following timelike paths that form a congruence ##u^a## then the energy momentum density they measure at an event is ##u_aT^{ba}##. You integrate over some finite region of a spacelike 3-surface (formally, an achronal one) that encloses your "point particle" and you get its four momentum.

I may not have that quite right - sure others will correct me if so.
 
  • Like
Likes Dale, dsaun777 and topsquark
Ibix said:
If I have this straight, if you have a family of observers following timelike paths that form a congruence ##u^a## then the energy momentum density they measure at an event is ##u_aT^{ba}##. You integrate over some finite region of a spacelike 3-surface (formally, an achronal one) that encloses your "point particle" and you get its four momentum.

I may not have that quite right - sure others will correct me if so.
This is pretty much correct. The only clarification I would make is that the congruence ##u^a## describes the worldlines of pieces of the matter whose energy-momentum density you want to obtain, not "observers". Assuming that these worldlines occupy a suitably small "world tube", surrounded by enough vacuum to treat the matter as an isolated region, then, if one is OK with modeling the matter as a point particle, one would do the integral you describe over the intersection of the world tube with an achronal 3-surface to obtain the energy-momentum density 4-vector for the matter at the "point" that represents that intersection.

One other caution here is that, if the congruence ##u^a## is not hypersurface orthogonal (meaning it is impossible to find an achronal 3-surface that is everywhere orthogonal to ##u^a##, which is what we would naturally want to support an interpretation as "the matter at some instant of time"), modeling the matter by a simple energy-momentum 4-vector will not be enough. Heuristically, the "point particle" will have spin as well as 4-momentum, and it will take some additional geometric object besides the 4-momentum density vector to describe the spin.
 
  • Like
Likes Ibix and dsaun777
PeterDonis said:
This is pretty much correct. The only clarification I would make is that the congruence ##u^a## describes the worldlines of pieces of the matter whose energy-momentum density you want to obtain, not "observers".
Ah, right - that makes more sense. It was bothering me how the ##u^a## would disappear in the integral (which it would need to do if it really were some arbitrary family of observers and the result had to be an invariant). But if it's part of the specification of the material then of course I don't expect it to vanish. Thanks.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top