- #1
Knissp
- 75
- 0
Homework Statement
Show that the area of [tex]x^2/a^2+y^2/b^2=1[/tex] is [tex]\pi ab[/tex]
Homework Equations
Given transformations:
[tex]x=au[/tex]
[tex]y=bv [/tex]
The Attempt at a Solution
[tex]J(u,v) = a*b [/tex]
[tex] \int\int ((au)/a)^2+((bv)/b)^2 J(u,v) dudv [/tex]
[tex]\int\int u^2+v^2 J(u,v) dudv [/tex]
[tex]\int_0^{2\pi}\int_0^1 r^2 J(u,v) r drd\theta [/tex]
[tex]\int_0^{2\pi}\int_0^1 a b r^3 drd\theta [/tex]
[tex]\int_0^{2\pi} 1/4 a b d\theta [/tex]
=[tex]\frac{\pi a b}{2}[/tex]
But that's obviously wrong. Where did I mess up?