- #1
ab_gladsaxe
- 4
- 0
What's up with the "absorptive" quantum eraser?
In the famed "quantum eraser" of physics, there is two distinct types, one type which uses an absorptive apparatus for the method of "unmarking the path" and one which does not. For the absorptive type of quantum eraser we have a clear fallacy in its explanation.
The absorptive quantum eraser is designed as follows:
Step1) Set up an interference effect.
Step2) Introduce a path marker in one of the interfering paths (if the interfering system is photons and they are polarized in one direction, then a suitable path marker would be a half wave plate). Now you won't measure interference because the paths are marked (by distinct polarizations of horizontal and vertical).
Step3) Now introduce an absorptive apparatus in the experiment just prior to the detector which will project the system's state onto a "subensemble". In the example of photons with distinct polarizations, this amounts to the insertion of a polarizer which is oriented half way between horizontal and vertical, 45degrees. Now you will attenuate the beam by half, but the portion that gets to the detector will display interference. These photons are in a +45degree polarized state so it is not known as to weather they traversed the horizontal or vertical path.
This explanation has a fallacy. The absorptive apparatus that "unmarks the path" is actually selecting out (absorbing) the -45degree polarized photons and allowing the +45degree polarized photons to pass. These photons that pass are the one's that apparently display interference, but in fact it is the absorbed photons that are displaying the interference. The photons that pass are also "displaying" interference but only in a sense that we are actually conducting an "absorption spectroscopy" experiment. The photons that are absorbed by the polarizer are being absorbed by atoms whose final states are one-to-one with the -45degree polarized state of the photons (so it is not possible to measure the atom's state in order to determine the path of the absorbed photon). If you were actually using the -45degree polarizing material as a detector (in principle the absorption is a measurement), then it would be noticed that the measurement (the absorption) is actually displaying interference. This interference is an interference between distinguishable states of polarization. This is why people are so easily misled in this fallacy, because they accept, by convention, that interference is not possible between distinguishable states. Rubbish I say!
Here is a publication by Kwiat-Englert on the quantum eraser, where they present results of a non-absorptive eraser but they give an explanation using the absorptive one which presents the fallacy I've mentioned. Look on page 3.
http://research.physics.illinois.edu/QI/photonics/papers/WheelerChapterFinal.pdf
In the famed "quantum eraser" of physics, there is two distinct types, one type which uses an absorptive apparatus for the method of "unmarking the path" and one which does not. For the absorptive type of quantum eraser we have a clear fallacy in its explanation.
The absorptive quantum eraser is designed as follows:
Step1) Set up an interference effect.
Step2) Introduce a path marker in one of the interfering paths (if the interfering system is photons and they are polarized in one direction, then a suitable path marker would be a half wave plate). Now you won't measure interference because the paths are marked (by distinct polarizations of horizontal and vertical).
Step3) Now introduce an absorptive apparatus in the experiment just prior to the detector which will project the system's state onto a "subensemble". In the example of photons with distinct polarizations, this amounts to the insertion of a polarizer which is oriented half way between horizontal and vertical, 45degrees. Now you will attenuate the beam by half, but the portion that gets to the detector will display interference. These photons are in a +45degree polarized state so it is not known as to weather they traversed the horizontal or vertical path.
This explanation has a fallacy. The absorptive apparatus that "unmarks the path" is actually selecting out (absorbing) the -45degree polarized photons and allowing the +45degree polarized photons to pass. These photons that pass are the one's that apparently display interference, but in fact it is the absorbed photons that are displaying the interference. The photons that pass are also "displaying" interference but only in a sense that we are actually conducting an "absorption spectroscopy" experiment. The photons that are absorbed by the polarizer are being absorbed by atoms whose final states are one-to-one with the -45degree polarized state of the photons (so it is not possible to measure the atom's state in order to determine the path of the absorbed photon). If you were actually using the -45degree polarizing material as a detector (in principle the absorption is a measurement), then it would be noticed that the measurement (the absorption) is actually displaying interference. This interference is an interference between distinguishable states of polarization. This is why people are so easily misled in this fallacy, because they accept, by convention, that interference is not possible between distinguishable states. Rubbish I say!
Here is a publication by Kwiat-Englert on the quantum eraser, where they present results of a non-absorptive eraser but they give an explanation using the absorptive one which presents the fallacy I've mentioned. Look on page 3.
http://research.physics.illinois.edu/QI/photonics/papers/WheelerChapterFinal.pdf
Last edited by a moderator: