- #1
Saitama
- 4,243
- 93
Problem:
$$\int_0^{\infty} \frac{1}{x}\left(\frac{1}{1+e^x}-\frac{1}{1+e^{2x}}\right)\,dx$$
Attempt:
I use the following two series expansions:
$$\frac{1}{1+e^x}=\frac{e^{-x}}{1+e^{-x}}=e^{-x}\sum_{k=0}^{\infty} (-1)^k e^{-kx}=\sum_{k=0}^{\infty} (-1)^k e^{-(k+1)x}$$
$$\frac{1}{1+e^{2x}}=\sum_{k=0}^{\infty} (-1)^k e^{-2x(k+1)}$$
Hence, the given definite integral can be written as:
$$\int_0^{\infty} \frac{1}{x}\left(\sum_{k=0}^{\infty} (-1)^k e^{-x(k+1)}-\sum_{k=0}^{\infty} (-1)^k e^{-2x(k+1)}\right)\,dx$$
$$=\sum_{k=0}^{\infty} (-1)^k\int_0^{\infty} \frac{e^{-x(k+1)}-e^{-2x(k+1)}}{x}\,dx$$
Use the substitution, $x(k+1)=t$ to get the following definite integral:
$$=\sum_{k=0}^{\infty} (-1)^k \int_0^{\infty} \frac{e^{-t}-e^{-2t}}{t}\,dt$$
$$=\ln 2 \sum_{k=0}^{\infty} (-1)^k$$
The sum $\displaystyle \sum_{k=0}^{\infty} (-1)^k$ is divergent but W|A gives a nice answer to the above definite integral. What's wrong with my approach?
Any help is appreciated. Thanks!
$$\int_0^{\infty} \frac{1}{x}\left(\frac{1}{1+e^x}-\frac{1}{1+e^{2x}}\right)\,dx$$
Attempt:
I use the following two series expansions:
$$\frac{1}{1+e^x}=\frac{e^{-x}}{1+e^{-x}}=e^{-x}\sum_{k=0}^{\infty} (-1)^k e^{-kx}=\sum_{k=0}^{\infty} (-1)^k e^{-(k+1)x}$$
$$\frac{1}{1+e^{2x}}=\sum_{k=0}^{\infty} (-1)^k e^{-2x(k+1)}$$
Hence, the given definite integral can be written as:
$$\int_0^{\infty} \frac{1}{x}\left(\sum_{k=0}^{\infty} (-1)^k e^{-x(k+1)}-\sum_{k=0}^{\infty} (-1)^k e^{-2x(k+1)}\right)\,dx$$
$$=\sum_{k=0}^{\infty} (-1)^k\int_0^{\infty} \frac{e^{-x(k+1)}-e^{-2x(k+1)}}{x}\,dx$$
Use the substitution, $x(k+1)=t$ to get the following definite integral:
$$=\sum_{k=0}^{\infty} (-1)^k \int_0^{\infty} \frac{e^{-t}-e^{-2t}}{t}\,dt$$
$$=\ln 2 \sum_{k=0}^{\infty} (-1)^k$$
The sum $\displaystyle \sum_{k=0}^{\infty} (-1)^k$ is divergent but W|A gives a nice answer to the above definite integral. What's wrong with my approach?
Any help is appreciated. Thanks!