- #1
sarrah1
- 66
- 0
Hi
I have 2 linear integral operators
$(Ku)(x)=\int_{a}^{b} \,k(x,t)u(t)dt$
$(Mu)(x)=\int_{a}^{b} \,m(x,t)u(t)dt$
I am defining $||K||=max([x\in[a,b]\int_{a}^{b} \,|k(x,t| dt$ same for $L$
when does $||K+M||=||K||+||M||$
thanks
sarrah
I have 2 linear integral operators
$(Ku)(x)=\int_{a}^{b} \,k(x,t)u(t)dt$
$(Mu)(x)=\int_{a}^{b} \,m(x,t)u(t)dt$
I am defining $||K||=max([x\in[a,b]\int_{a}^{b} \,|k(x,t| dt$ same for $L$
when does $||K+M||=||K||+||M||$
thanks
sarrah