I When does the separation of variables work

kelly0303
Messages
573
Reaction score
33
When studying the hydrogen atom, given that the potential depends only on the distance and not an any angle, we can do a separation of variables of the wavefunction as the product between a function depending only on the distance between particles (protons and electrons) and a spherical harmonic. However I saw this done even when the potential does depend on angle, for example when having the interaction between 2 electric dipoles. What is the criterion based on which I know if I can just a factorizable wavefunction or not? Thank you!
 
  • Like
Likes dextercioby
Physics news on Phys.org
Two answers:

(1) You just have to try it. Sometimes it helps and sometimes it just makes a mess.

(2) There is a deep relation between separation of variables and symmetries. The hydrogen atom can be solved by separation of variables in two different coordinate systems, spherical and parabolic. This is why you have the degeneracy of radial and angular energy levels.
 
  • Like
Likes dextercioby
Separation variables works when it works. If it doesn't work, it can often lead to a series solution like the Legendre polynomial expansion.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top