- #1
alexmahone
- 304
- 0
Test for convergence: $\sum_2^\infty\frac{1}{n(\ln n)^p}$ when $p<0$.
My working:
Consider the function $f(x)=\frac{1}{x(\ln x)^p}=\frac{(\ln x)^q}{x}$ when $q=-p>0$.
In order to use the integral test, I have to establish that $f(x)$ is decreasing for $x\ge 2$. How do I proceed?
My working:
Consider the function $f(x)=\frac{1}{x(\ln x)^p}=\frac{(\ln x)^q}{x}$ when $q=-p>0$.
In order to use the integral test, I have to establish that $f(x)$ is decreasing for $x\ge 2$. How do I proceed?
Last edited: