- #1
Aidyan
- 182
- 14
I'm wondering whether a differential equation that can be integrated numerically forwards in time can also be integrated backwards in time starting from the final state and inverting the momenta/velocities? I tried and it didn't work. But I'm not sure whether I'm making a mistake with my solver or because an ODE must meet some conditions to be numerically reversible in time? In my case, it is a second order non-linear ODE (the damped driven oscillator): ## \ddot{\theta} + 2\beta \dot{\theta} + \omega_{0}^2 \sin \theta = \gamma \omega{_0}^2 \cos{\omega t}##, where ##\omega##, ##\omega_0##, ##\beta##, and ##\gamma## are constants. But my question is more general regarding every DE. That is, is there a conceptual fundamental reason that (sometimes or never?) a differential equation can't be integrable in reverse?