- #1
random_soldier
- 80
- 10
Something I have been thinking about and don't really have a good answer to.
For context, let's take physics and engineering for example. From my understanding, a very rough definition of physics would be the study of naturally occurring physical phenomena and understanding how they work. Engineering, again in my words, would be the application of known and well understood phenomena to create systems to achieve needs that people may have, even if that is just to better study some physics that cannot be studied properly by currently and readily available systems.
Now, to my understanding, study of dark matter or even designing a system to study it would still very much be physics as the properties do not seem well understood to my knowledge and any system designed to detect/study it would also require figuring out the physics to do so.
On the other extreme, designing a new efficient irrigation or traffic light system with the help of some new tech like internet of things or artificial intelligence would seem very much like engineering as there is no new phenomena being studied, as far as I can see into this hypothetical. All phenomena and systems are well understood and simply being rearranged for higher efficiency.
Now I don't know where to draw the line in, for example, IC development. Do electrical engineers simply never dabble in or encounter unknown physical phenomena when trying to stretch the limits of what ICs can do? Or do they just write their engineering portions and understanding and leave it to the physicists to figure out the rest? Or does it not count as physics altogether if you discover that even though the phenomena was previously not understood, it turns out to be well documented upon further study? Or do electrical engineers never do any of that in the first place?
I have similar questions for fusion science. Do engineers working on tokamaks just work on improving system efficiency from known physics while physicists think about what they see and what they want to see?
For context, let's take physics and engineering for example. From my understanding, a very rough definition of physics would be the study of naturally occurring physical phenomena and understanding how they work. Engineering, again in my words, would be the application of known and well understood phenomena to create systems to achieve needs that people may have, even if that is just to better study some physics that cannot be studied properly by currently and readily available systems.
Now, to my understanding, study of dark matter or even designing a system to study it would still very much be physics as the properties do not seem well understood to my knowledge and any system designed to detect/study it would also require figuring out the physics to do so.
On the other extreme, designing a new efficient irrigation or traffic light system with the help of some new tech like internet of things or artificial intelligence would seem very much like engineering as there is no new phenomena being studied, as far as I can see into this hypothetical. All phenomena and systems are well understood and simply being rearranged for higher efficiency.
Now I don't know where to draw the line in, for example, IC development. Do electrical engineers simply never dabble in or encounter unknown physical phenomena when trying to stretch the limits of what ICs can do? Or do they just write their engineering portions and understanding and leave it to the physicists to figure out the rest? Or does it not count as physics altogether if you discover that even though the phenomena was previously not understood, it turns out to be well documented upon further study? Or do electrical engineers never do any of that in the first place?
I have similar questions for fusion science. Do engineers working on tokamaks just work on improving system efficiency from known physics while physicists think about what they see and what they want to see?