- #1
boyboy400
- 9
- 0
Homework Statement
"A gradient of a vector field is symmetric if and only if this vector field is a gradient of a function"
Pure Strain Deformations of Surfaces
Marek L. Szwabowicz
J Elasticity (2008) 92:255–275
DOI 10.1007/s10659-008-9161-5
f=5x^3+3xy-15y^3
So the gradient of this function is a vector field, right? Now the grad of this grad is a tensor which is symmetric and according to Marek it's always like that.
Can you guys think of any reason or proof for it?
Homework Equations
The Attempt at a Solution
Maybe it has something to do with double differentiation...but I can't figure out why...
Last edited: