- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{s8.2.2.62} $
$f'(a)$ exists iff these one-sided derivatives exist and are equal.
(a) Find ${f'}_-(4)$ and ${f'}_+(4)$ for the function
$$f(x)=\begin{cases}
0 &if\quad x\le 0\\
5-x &if\quad 0<x<4\\
\dfrac{1}{5-x} &if\quad x\ge 4
\end{cases}$$
(b) Sketch the graph of $f$.
(c) Where is f discontinuous?
$x=5$
(d) Where is f not differentiable?
(4,1) cornerok where does the one sided derivative fit into this
c
also was going to try a tikx on this but have never done cases
this one was done in demos and modified in ibispaint took an hour
anyway typos, comments, etc
$f'(a)$ exists iff these one-sided derivatives exist and are equal.
(a) Find ${f'}_-(4)$ and ${f'}_+(4)$ for the function
$$f(x)=\begin{cases}
0 &if\quad x\le 0\\
5-x &if\quad 0<x<4\\
\dfrac{1}{5-x} &if\quad x\ge 4
\end{cases}$$
(b) Sketch the graph of $f$.
(c) Where is f discontinuous?
$x=5$
(d) Where is f not differentiable?
(4,1) cornerok where does the one sided derivative fit into this
c
also was going to try a tikx on this but have never done cases
this one was done in demos and modified in ibispaint took an hour
anyway typos, comments, etc