- #1
bubble-flow
- 2
- 1
I have calculated the wave length of a 36 kHz acoustic wave in 20 °C water to be around 41.16mm.
Suppose I have a transducer that produces a 36 kHz acoustic wave and a small water container with a length of 41.6 mm. How will the standing acoustic wave look like, which is produced by the reflection of the incident ultrasound wave upon hitting the hard boundary (plexiglas wall) of the container?
I am not sure but as far as I have understood, the resulting standing wave has to have a pressure anti-node (displacement node) at the rigid boundary, which is the container wall, as the wall will not be able to oscillate. Does this mean that I draw one wave length backwards from the container wall and get to the transducer, which will result in another pressure anti-node on the transducer side?
Is the incident wave being emitted from the transducer completely ignored and only the standing acoustic wave plays a role in the container?
Also, am I understanding this correctly? On a pressure anti- node, the pressure changes with time , oscillating +- around the hydrostatic pressure and on a pressure node, the pressure remains contant (only hydrostatic pressure)?
I have included a simple sketch of this constellation.
Thank you for your help.
Suppose I have a transducer that produces a 36 kHz acoustic wave and a small water container with a length of 41.6 mm. How will the standing acoustic wave look like, which is produced by the reflection of the incident ultrasound wave upon hitting the hard boundary (plexiglas wall) of the container?
I am not sure but as far as I have understood, the resulting standing wave has to have a pressure anti-node (displacement node) at the rigid boundary, which is the container wall, as the wall will not be able to oscillate. Does this mean that I draw one wave length backwards from the container wall and get to the transducer, which will result in another pressure anti-node on the transducer side?
Is the incident wave being emitted from the transducer completely ignored and only the standing acoustic wave plays a role in the container?
Also, am I understanding this correctly? On a pressure anti- node, the pressure changes with time , oscillating +- around the hydrostatic pressure and on a pressure node, the pressure remains contant (only hydrostatic pressure)?
I have included a simple sketch of this constellation.