MHB Where can I find info on the partial derivative of elastic energy wrt position?

AI Thread Summary
The discussion revolves around finding resources on the partial derivatives of elastic energy, surfacic energy, and strain with respect to position, particularly in the context of the finite element method. The author seeks accessible references due to limited skills in vector calculus. A specific example is provided, illustrating that the derivative of elastic energy relates to force. There is a request for clarification on the term "surfacic energy." Recommendations suggest that books on material science may cover the derivative of strain with respect to position.
datahead8888
Messages
8
Reaction score
0
I've been studying a version of the finite element method.

The author of a paper I was reading refers to the partial derivative of total elastic energy wrt position, partial derivative of surfacic energy wrt position, and partial derivative of strain wrt position.

Does anyone know of a good resource that explains these concepts?

I'm not as skilled with vector calculus, so a less aggressive reference is good.
 
Mathematics news on Phys.org
If elastic energy is
$$\frac{1}{2} k x^{2},$$
then its derivative w.r.t. position is just the negative of the force:
$$ \frac{ \partial}{ \partial x} \left( \frac{1}{2} kx^{2} \right)= kx = -F.$$

I've never heard of "surfacic energy". Could you define that, please?

As for the derivative of strain w.r.t. position, you could probably find that in a book on material science.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top