- #1
Mayhem
- 354
- 253
- Homework Statement
- Describe the total molecular Hamiltonian
- Relevant Equations
- $$\hat{H} = -\frac{\hbar^2}{2m_e} \sum^{N_e}_{i=1} \nabla_i^2 -j_0 \sum^{N_e}_{i=1} \sum^{N_n}_{I=1} \frac{Z_I}{r_{Ii}}+\frac{1}{2}j_0 \sum^{N_e}_{i=j}\frac{1}{r_{ij}}$$
Hello.
As an assignment, I have to explain the total molecular Hamiltonian. Problem is, I can't find it anywhere in my book (Atkins, Physical Chemistry: Quanta, Matter, and Change, 2nd Edition), even when I access the index for "Hamiltonian -> polyatomic molecules". They do give the electronic Hamiltonian, which is $$\hat{H} = -\frac{\hbar^2}{2m_e} \sum^{N_e}_{i=1} \nabla_i^2 -j_0 \sum^{N_e}_{i=1} \sum^{N_n}_{I=1} \frac{Z_I}{r_{Ii}}+\frac{1}{2}j_0 \sum^{N_e}_{i=j}\frac{1}{r_{ij}}$$
Any pointers? If anyone has the book, and I overlooked something, a page reference would be nice, because I just can't find it.
As an assignment, I have to explain the total molecular Hamiltonian. Problem is, I can't find it anywhere in my book (Atkins, Physical Chemistry: Quanta, Matter, and Change, 2nd Edition), even when I access the index for "Hamiltonian -> polyatomic molecules". They do give the electronic Hamiltonian, which is $$\hat{H} = -\frac{\hbar^2}{2m_e} \sum^{N_e}_{i=1} \nabla_i^2 -j_0 \sum^{N_e}_{i=1} \sum^{N_n}_{I=1} \frac{Z_I}{r_{Ii}}+\frac{1}{2}j_0 \sum^{N_e}_{i=j}\frac{1}{r_{ij}}$$
Any pointers? If anyone has the book, and I overlooked something, a page reference would be nice, because I just can't find it.