Where Did I Go Wrong in Degenerate Perturbation Theory?

mathsisu97
Messages
6
Reaction score
0
Homework Statement
For a free particle confined to a ring with radius ##a ## with pertubation ## H' = V_0 \cos(x) ##, what is the first order correct energy and correction to the wavefunction?
Relevant Equations
## H' = V_0 \cos(x) ##
## \psi_n = \frac{1}{\sqrt{2 \pi}} e^{inx} ##
## E_n = \frac{n^2 \hbar^2}{2 m a^2} ##
## n = 0, \pm 1, \pm 2 \ldots ##
$$ W_{n,n} = \int_0^{2 \pi} \frac{1}{\sqrt{2 \pi}} e^{-inx} V_0 \cos(x) \frac{1}{\sqrt{2 \pi}} e^{inx} dx $$
$$ = 0 $$

$$ W_{n, -n} = \int_0^{2 \pi} \frac{1}{\sqrt{2 \pi}} e^{-inx} V_0 \cos(x) \frac{1}{\sqrt{2 \pi}} e^{-inx} dx $$
$$ = \frac{a n ( \sin(4 \pi n) + i \cos( 4 \pi n) - i )}{\pi (4 n^2 -1) } $$
$$ = 0 $$

This doesn't seem right? Where have I gone wrong?
 
Physics news on Phys.org
I basically know nothing about this subject, but fwiw when I tried it I got the first order correction$$\psi_n^{(1)} = \frac{ma^2}{\pi \hbar^2} \sum_{l\neq n} \frac{(n+l)(-i + i)}{n^2 - 2ln + l^2 -1} = 0$$to be zero as well. Perhaps a more experienced member can advise?
 
Last edited by a moderator:
etotheipi said:
I basically know nothing about this subject, but fwiw when I tried it I got the first order correction$$\psi_n^{(1)} = \frac{ma^2}{\pi \hbar^2} \sum_{l\neq m} \frac{(n+l)(-i + i)}{n^2 - 2ln + l^2 -1} = 0$$to be zero as well. Perhaps a more experienced member can advise?
Watch out. Are there integer values of ##l## for which the denominator is zero?
You see that you must be careful with these specific cases. Go back to the integral and consider these two cases separately.
 
nrqed said:
Watch out. Are there integer values of ##l## for which the denominator is zero?
You see that you must be careful with these specific cases. Go back to the integral and consider these two cases separately.

Ah, neat! Yeah, ##l = n \pm 1## both give zero denominator. Considering these separately means doing the integrals of ##e^{\pm ix} \cos{x}## between ##0## and ##2\pi##, each of which gives ##\pi##. So I think, these two terms will be the only two non-zero contributions to the first-order correction.

Does that sound okay to you? I won't write down further details because I'm not the OP, after all :smile:
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top