- #1
mathsisu97
- 6
- 0
- Homework Statement
- For a free particle confined to a ring with radius ##a ## with pertubation ## H' = V_0 \cos(x) ##, what is the first order correct energy and correction to the wavefunction?
- Relevant Equations
- ## H' = V_0 \cos(x) ##
## \psi_n = \frac{1}{\sqrt{2 \pi}} e^{inx} ##
## E_n = \frac{n^2 \hbar^2}{2 m a^2} ##
## n = 0, \pm 1, \pm 2 \ldots ##
$$ W_{n,n} = \int_0^{2 \pi} \frac{1}{\sqrt{2 \pi}} e^{-inx} V_0 \cos(x) \frac{1}{\sqrt{2 \pi}} e^{inx} dx $$
$$ = 0 $$
$$ W_{n, -n} = \int_0^{2 \pi} \frac{1}{\sqrt{2 \pi}} e^{-inx} V_0 \cos(x) \frac{1}{\sqrt{2 \pi}} e^{-inx} dx $$
$$ = \frac{a n ( \sin(4 \pi n) + i \cos( 4 \pi n) - i )}{\pi (4 n^2 -1) } $$
$$ = 0 $$
This doesn't seem right? Where have I gone wrong?
$$ = 0 $$
$$ W_{n, -n} = \int_0^{2 \pi} \frac{1}{\sqrt{2 \pi}} e^{-inx} V_0 \cos(x) \frac{1}{\sqrt{2 \pi}} e^{-inx} dx $$
$$ = \frac{a n ( \sin(4 \pi n) + i \cos( 4 \pi n) - i )}{\pi (4 n^2 -1) } $$
$$ = 0 $$
This doesn't seem right? Where have I gone wrong?