- #1
Dead Boss
- 150
- 1
Homework Statement
Derive the gravitational potential energy from Newton's law.
Homework Equations
[tex]
\mathbf{F} = -G \frac{m_1m_2}{\left|\mathbf{r}\right|^3} \mathbf{r}
[/tex]
[tex]
W = \int_A^B \mathbf{F} \cdot{} d\mathbf{r}
[/tex]
[tex]
\Delta{}U = W
[/tex]
The Attempt at a Solution
I can use the scalar version of the law, but I want to do it with the vector form.
So, first some easy substitution:
[tex]
W = \int_A^B \mathbf{F} \cdot{} d\mathbf{r}
= -Gm_1m_2 \int_A^B \frac{\mathbf{r}\cdot{}d\mathbf{r}}{\left|\mathbf{r}\right|^3}
= Gm_1m_2 \int_A^B \frac{r_xdr_x + r_ydr_y + r_zdr_z}{\left|\mathbf{r}\right|^3}
[/tex]
[tex]
= -Gm_1m_2 \left\{
\int_A^B \frac{r_x}{\left|\mathbf{r}\right|^3} dr_x +
\int_A^B \frac{r_y}{\left|\mathbf{r}\right|^3} dr_y +
\int_A^B \frac{r_z}{\left|\mathbf{r}\right|^3} dr_z
\right\}
[/tex]
Now take one integrand, for example the x part,
[tex]
\int_A^B \frac{r_x}{\sqrt{r_x^2 + r_y^2 + r_z^2}^3} dr_x =
\int_A^B r_x \left( r_x^2 + r_y^2 + r_z^2 \right)^{-\frac{3}{2}} dr_x
[/tex]
and perform substitution:
[tex]
t = r_x^2 + r_y^2 + r_z^2
[/tex]
[tex]
dt = 2r_x dr_x
[/tex]
[tex]
\frac{dt}{2} = r_x dr_x
[/tex]
That yields:
[tex]
\frac{1}{2} \int_A^B t^{-\frac{3}{2}} dt_x =
\left[ -t^{-\frac{1}{2}} \right]_A^B =
\left[ -\frac{1}{\sqrt{r_x^2 + r_y^2 + r_z^2}} \right]_A^B =
\left[ -\frac{1}{\left|\mathbf{r}\right|} \right]_A^B =
-\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
[/tex]
Doing the same for other two integrands and plunging them back:
[tex]
W = -Gm_1m_2 \left\{
-\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
-\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
-\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
\right\}
[/tex]
And finally
[tex]
W = 3Gm_1m_2 \left(
\frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|}
\right)
[/tex]
Now if we take B at infinity, the potential energy will be
[tex]
U = - 3G\frac{m_1m_2}{\left|\mathbf{r}\right|}
[/tex]
which is three times as large as it should be. Don't tell me, let me guess. There's an error somewhere up there. *sigh*
Any help would be highly appreciated.
Last edited: