Where Did I Go Wrong? Solving for Angular Momentum in Air Table Puck Collision

AI Thread Summary
The discussion focuses on solving for angular momentum in a collision involving air table pucks. The user expresses uncertainty about a mistake in their calculations related to the center of mass (CoM) and angular momentum equations. They clarify the CoM positions for both pucks and derive the distance from the CoM to puck 1, ultimately calculating it as 0.06 m. Acknowledgment of confusion regarding different reference points for the CoM is noted, leading to a better understanding of the problem. The thread highlights the importance of consistent notation and reference points in physics calculations.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For part(a),
1675366620399.png

The solution is,
1675370648471.png

However, I made a mistake somewhere in my working below and I'm not sure what it is. Does anybody please know? Thank you!

Here is a not too scale diagram at the moment of the collision,
1675366935512.png

## \vec L = \vec r \times \vec p ##
## \vec L = -y_{com}\hat j \times m_1v\hat i ##
## \vec L = y_{com}m_1v\hat k ##
## \vec L = \frac {m_2m_1v(r_1 +r_2)}{m_1 + m_2}\hat k ##
 

Attachments

  • 1675366850583.png
    1675366850583.png
    2.8 KB · Views: 123
Last edited by a moderator:
Physics news on Phys.org
For part (a) please show what the distance ##y_1## from the CoM to the center of puck 1 is and how you got it in symbolic form.
 
  • Like
Likes member 731016
kuruman said:
For part (a) please show what the distance ##y_1## from the CoM to the center of puck 1 is and how you got it in symbolic form.
Thank you for your reply @kuruman!

I assume that the COM of each puck is at the geometric center.

Choosing the center of ##m_1## as the origin where ##y = 0## and let ##r_3## be the vertical distance from ## y = 0## to the COM of ##m_2##.

## y_1 = y_{com} = \frac {m_1(0) + m_2r_3} {m_1 + m_2} ##

## y_1 = \frac {m_2(r_1 + r_2)} {m_1 + m_2} ##

Then substituting in values,

## y_1 = \frac {0.12(0.1)} {0.2} ##
## y_1 = 0.06 m ##

Also please see post #1, I missed some of the notations so I have edited it.

Many thanks!
 
Thank you for your help @kuruman! I see now how they got their answer. I think I got confused because the solutions calculated the ##y_{com}## from a different point. Good idea to use ##y_1## notation for calculations of CoM with respect to different origins!Many thanks!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top