- #1
- 683
- 412
As I said my goal is to derive the equation ##\tilde{B}^k(\vec{q})=-i\varepsilon^{ijk}q^i\tilde{A}^j_{cl}(\vec{q})##
As far as I know, the magnetic field is defined using the potential as ##\vec{B}=\vec{\nabla}\times\vec{A}##
Then in equation 6.6 they define ##A^\mu(x)=\int \frac{1}{(2\pi)^3}\tilde{A}^\mu(\vec{k})e^{-ikx}\text{d}^3 k## and an equivalent equation for ##\vec{B}##. So, using the definition
$$B^k=\varepsilon^{kij}\partial_i A^j=\int \frac{\varepsilon^{kij}}{(2\pi)^3}\tilde{A}^j(\vec{q})\partial_ie^{-iqx}\text{d}^3 q=\int \frac{1}{(2\pi)^3}\left[\varepsilon^{kij}\tilde{A}^j(\vec{q})(-iq_i)\right]e^{-iqx}\text{d}^3 q\Longrightarrow \tilde{B}^k=-i\varepsilon^{ijk}q_i\tilde{A}^j(\vec{q})$$
But this is not the equation the book gives, because we are using the metric ##(+---)## and then ##q^i=-q_i## so the equation I get is $$\tilde{B}^k=i\varepsilon^{ijk}q^i\tilde{A}^j(\vec{q})$$
Someone can tell me where is my error?
Thank you very much :)
As far as I know, the magnetic field is defined using the potential as ##\vec{B}=\vec{\nabla}\times\vec{A}##
Then in equation 6.6 they define ##A^\mu(x)=\int \frac{1}{(2\pi)^3}\tilde{A}^\mu(\vec{k})e^{-ikx}\text{d}^3 k## and an equivalent equation for ##\vec{B}##. So, using the definition
$$B^k=\varepsilon^{kij}\partial_i A^j=\int \frac{\varepsilon^{kij}}{(2\pi)^3}\tilde{A}^j(\vec{q})\partial_ie^{-iqx}\text{d}^3 q=\int \frac{1}{(2\pi)^3}\left[\varepsilon^{kij}\tilde{A}^j(\vec{q})(-iq_i)\right]e^{-iqx}\text{d}^3 q\Longrightarrow \tilde{B}^k=-i\varepsilon^{ijk}q_i\tilde{A}^j(\vec{q})$$
But this is not the equation the book gives, because we are using the metric ##(+---)## and then ##q^i=-q_i## so the equation I get is $$\tilde{B}^k=i\varepsilon^{ijk}q^i\tilde{A}^j(\vec{q})$$
Someone can tell me where is my error?
Thank you very much :)