- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have to solve the following problem:
$$u_t=u_{xx}, x \in \mathbb{R}, t>0$$
$$u(x,0)=f(x)=H(x)=\left\{\begin{matrix}
1, x>0\\
0, x<0
\end{matrix}\right.$$
I have done the following:
We use the method separation of variables, $u(x,t)=X(x)T(t)$.
I have found that the eigenfunctions are $X_k(x)=e^{ikx}, \lambda=k^2, k \in \mathbb{R}$
$T_k(t)=e^{-k^2t}$
$$u(x,t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k) e^{ikx} e^{-k^2t}}dk$$
$$u(x,0)=H(x) \Rightarrow H(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{ikx}}dk$$
$$\widetilde{f}(k)=\int_0^{\infty}{e^{-ikx}}dx=\frac{1}{ik}$$
$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx} e^{-k^2t}}dk$$
To find the last integral,I thought the following:
$$u_x= \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$
$$u(x,t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}} dx=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}{ e^{-\frac{x^2}{4t}}}=1$$
since:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{4t}}e^{-\frac{y^2}{4t}}dxdy= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{4t}}=\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\frac{-r^2}{4t}}r d \theta dr=\int_{0}^{+\infty} 2 \pi e^{\frac{-r^2}{4t}}r dr=- \pi [4t e^{\frac{-r^2}{4t}}]_0^{+\infty}=4t \pi \Rightarrow \int_{\infty}^{+\infty} e^{\frac{-x^2}{4t}}=\sqrt{4t \pi}$$
But the solution $u(x,t)=1$ does not satisfy the conditions. Where is my mistake? (Wondering)
I have to solve the following problem:
$$u_t=u_{xx}, x \in \mathbb{R}, t>0$$
$$u(x,0)=f(x)=H(x)=\left\{\begin{matrix}
1, x>0\\
0, x<0
\end{matrix}\right.$$
I have done the following:
We use the method separation of variables, $u(x,t)=X(x)T(t)$.
I have found that the eigenfunctions are $X_k(x)=e^{ikx}, \lambda=k^2, k \in \mathbb{R}$
$T_k(t)=e^{-k^2t}$
$$u(x,t)=\frac{1}{2\pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k) e^{ikx} e^{-k^2t}}dk$$
$$u(x,0)=H(x) \Rightarrow H(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\widetilde{f}(k)e^{ikx}}dk$$
$$\widetilde{f}(k)=\int_0^{\infty}{e^{-ikx}}dx=\frac{1}{ik}$$
$$u(x,t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}{\frac{1}{ik} e^{ikx} e^{-k^2t}}dk$$
To find the last integral,I thought the following:
$$u_x= \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}}$$
$$u(x,t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^2}{4t}} dx=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty}{ e^{-\frac{x^2}{4t}}}=1$$
since:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{4t}}e^{-\frac{y^2}{4t}}dxdy= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{x^2+y^2}{4t}}=\int_{0}^{+\infty} \int_{0}^{2 \pi} e^{\frac{-r^2}{4t}}r d \theta dr=\int_{0}^{+\infty} 2 \pi e^{\frac{-r^2}{4t}}r dr=- \pi [4t e^{\frac{-r^2}{4t}}]_0^{+\infty}=4t \pi \Rightarrow \int_{\infty}^{+\infty} e^{\frac{-x^2}{4t}}=\sqrt{4t \pi}$$
But the solution $u(x,t)=1$ does not satisfy the conditions. Where is my mistake? (Wondering)