- #1
Bachelier
- 376
- 0
It is possible to do this and it is correct:
[tex]
\log \left[\sqrt{i}\right] = \log\left\{\exp\left[\frac{i}{2}\left(\frac{\pi}{2}+2\pi n\right)\right]\right\} = \frac{i}{2}\left(\frac{\pi}{2} + 2\pi n\right) = i\left(\frac{\pi}{4} + \pi n\right)
[/tex]
But:
[tex]
\log \left[i^2 \right] = \log\left\{\exp\left[2i \left(\frac{\pi}{2}+2\pi n\right)\right]\right\} = 2i \left(\frac{\pi}{2} + 2\pi n\right) = i\left(\pi + 4\pi n\right)
[/tex]
yet
## \log \left[i^2 \right] = \log \left[-1 \right] = i\left(\pi + 2\pi n\right) \ for \ k \in \mathbb{Z}## which is the correct argument.
[tex]
\log \left[\sqrt{i}\right] = \log\left\{\exp\left[\frac{i}{2}\left(\frac{\pi}{2}+2\pi n\right)\right]\right\} = \frac{i}{2}\left(\frac{\pi}{2} + 2\pi n\right) = i\left(\frac{\pi}{4} + \pi n\right)
[/tex]
But:
[tex]
\log \left[i^2 \right] = \log\left\{\exp\left[2i \left(\frac{\pi}{2}+2\pi n\right)\right]\right\} = 2i \left(\frac{\pi}{2} + 2\pi n\right) = i\left(\pi + 4\pi n\right)
[/tex]
yet
## \log \left[i^2 \right] = \log \left[-1 \right] = i\left(\pi + 2\pi n\right) \ for \ k \in \mathbb{Z}## which is the correct argument.