- #1
solakis1
- 422
- 0
we have the following formal proof:
i) \(\displaystyle \forall x[\forall y(xy=y)\Longrightarrow x=1]\).......theoren in real Nos
2)\(\displaystyle \forall y(xy=y)\Longrightarrow x=1\)......1,U.E ,x=x
3) \(\displaystyle (x0=0)\Longrightarrow x=1\)...... 2,U.E ,y=0
4)\(\displaystyle \forall A[A.0=0]\)........Theorem in Real Nos5) )\(\displaystyle [x.0=0]\)........4,U.E, A=x
6) x=1........3,5 M.Ponens
7) )\(\displaystyle \forall A[A=1]\)........ 6,U.I
U.E=Universal Elimination
U.I = Universal Introduction
I am afraid to say i find no mistake
i) \(\displaystyle \forall x[\forall y(xy=y)\Longrightarrow x=1]\).......theoren in real Nos
2)\(\displaystyle \forall y(xy=y)\Longrightarrow x=1\)......1,U.E ,x=x
3) \(\displaystyle (x0=0)\Longrightarrow x=1\)...... 2,U.E ,y=0
4)\(\displaystyle \forall A[A.0=0]\)........Theorem in Real Nos5) )\(\displaystyle [x.0=0]\)........4,U.E, A=x
6) x=1........3,5 M.Ponens
7) )\(\displaystyle \forall A[A=1]\)........ 6,U.I
U.E=Universal Elimination
U.I = Universal Introduction
I am afraid to say i find no mistake
Last edited: