MHB Where to Find Code for Computing Roots of Generalized Laguerre Polynomials?

AI Thread Summary
The discussion centers on finding code or libraries to compute the zeros of generalized Laguerre polynomials, specifically LαN(xi)=0. A user, vahid7mirzaei, is seeking FORTRAN code related to this topic for use in the pseudospectral method. Another participant points out that the original question is a duplicate from a math forum, raising concerns about it being spam. The conversation highlights the need for reliable programming resources for mathematical computations. Overall, the thread emphasizes the search for effective coding solutions in advanced applied mathematics.
vahid7mirzaei
Messages
2
Reaction score
0
Hi - does anyone know of a program library/subroutine/some other source, to find the zeros of a generalised Laguerre polynomial? ie. LαN(xi)=0
 
Mathematics news on Phys.org
vahid7mirzaei said:
Hi - does anyone know of a program library/subroutine/some other source, to find the zeros of a generalised Laguerre polynomial? ie. LαN(xi)=0

Hi vahid7mirzaei,

The text of your question is an exact duplicate of the one in https://mathhelpboards.com/advanced-applied-mathematics-16/zeros-generalised-laguerre-polynomial-16714.html with just a loss of formatting.
It suggests that you are a spambot rather than a person.
Can you clarify what is going on?
 
Hi, everyone.
I want to know about FORTRAN code for roots of Laguerre polynomials which is used in the pseudospectral method.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top