- #1
electronicxco
- 8
- 0
I have found for the integral of x(lnx)^2 dx to be :
((1)/(4)x^2)(2(ln(x)-1)ln(x)+1)
but i need it to be in one of these forms:
these are the choices:
x^2((lnx)^2 + lnx- (1/2)) +C
1/2 x^2 ((lnx)^2 +lnx + 1/2) +C
x^2((lnx)^2 + lnx + (1/2)) + C
x^2((lnx)^2 - lnx + (1/2)) + C
1/2 x^2 ((lnx)^2 -lnx + 1/2) +C
1/2 x^2 ((lnx)^2 -lnx - 1/2) +C
Thanks!
((1)/(4)x^2)(2(ln(x)-1)ln(x)+1)
but i need it to be in one of these forms:
these are the choices:
x^2((lnx)^2 + lnx- (1/2)) +C
1/2 x^2 ((lnx)^2 +lnx + 1/2) +C
x^2((lnx)^2 + lnx + (1/2)) + C
x^2((lnx)^2 - lnx + (1/2)) + C
1/2 x^2 ((lnx)^2 -lnx + 1/2) +C
1/2 x^2 ((lnx)^2 -lnx - 1/2) +C
Thanks!