- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{Whitman \ \ \ 8.4.7 }$
$\displaystyle
\int x \arctan\left({x}\right) \ dx
=\frac {{x}^{2} \arctan\left({x}\right)
+\arctan\left({x}\right)
- x} {2 } + C$
$\displaystyle uv-\int v \ du $
$\begin{align}\displaystyle
u& = x& dv&= \arctan\left({x}\right) \ dx \\
du&=dx& v& =\frac{1}{{x}^{2 }+1}
\end{align}$
So..
$$\frac{x}{{x}^{2 }+1} - \int\frac{1}{{x}^{2 }+1} \ dx$$
But this doesn't seem to be going toward the answer...
$\displaystyle
\int x \arctan\left({x}\right) \ dx
=\frac {{x}^{2} \arctan\left({x}\right)
+\arctan\left({x}\right)
- x} {2 } + C$
$\displaystyle uv-\int v \ du $
$\begin{align}\displaystyle
u& = x& dv&= \arctan\left({x}\right) \ dx \\
du&=dx& v& =\frac{1}{{x}^{2 }+1}
\end{align}$
So..
$$\frac{x}{{x}^{2 }+1} - \int\frac{1}{{x}^{2 }+1} \ dx$$
But this doesn't seem to be going toward the answer...