- #1
Kostik
- 128
- 14
- TL;DR Summary
- Dirac asserts that in flat space, ##A_{\nu:\sigma}=0## in flat space?
In Dirac's GTR. Sec. 12 (p. 22), he wants to show the equivalence of:
(a) Vanishing of the curvature tensor ##R^\beta_{\sigma\nu\rho}=0##; or equivalently, the equality of mixed second covariant derivatives ##A_{\nu:\sigma:\rho}=A_{\nu:\rho:\sigma}##.
(b) Path independence of parallel transport
(c) The existence of rectilinear coordinates (hence a constant metric).
The equivalence (a) ##\leftrightarrow## (b) is easy to show. Then Dirac simply says that if you take a vector ##A_{\nu}## at a point ##x## and parallel transport it to every point in the space, you have a vector field ##A_{\nu}(x)## with ##A_{\nu:\sigma}=0##. That's where I am stuck.
He is saying that if the parallel transport of ##A_\nu## from ##x## to ##y## is path-independent, then ##A_{\nu:\sigma}=0.##
Now, ##A_{\nu}(y)=A_{\nu}(x)+\int_{C}A_{\nu:\sigma}dx^\sigma## for any path ##C## from ##x## to ##y.## Equivalently, ##\oint_{C}A_{\nu:\sigma}dx^\sigma=0.## How does this imply ##A_{\nu:\sigma}=0##?
It seems like quite a strong statement to assert that ##A_{\nu:\sigma:\rho}=A_{\nu:\rho:\sigma}## implies ##A_{\nu:\sigma}=0##.
Is there a simple explanation in the simple (calculus-component based) language of Dirac's book?
Edit: Dirac's assertion cannot be correct. The contrapositive would be ##A_{\nu:\sigma}\neq 0## implies ##A_{\nu:\sigma:\rho}\neq A_{\nu:\rho:\sigma}##, which is plainly false: take ##A_{\nu:\sigma}(x) = \text{constant}.##
(a) Vanishing of the curvature tensor ##R^\beta_{\sigma\nu\rho}=0##; or equivalently, the equality of mixed second covariant derivatives ##A_{\nu:\sigma:\rho}=A_{\nu:\rho:\sigma}##.
(b) Path independence of parallel transport
(c) The existence of rectilinear coordinates (hence a constant metric).
The equivalence (a) ##\leftrightarrow## (b) is easy to show. Then Dirac simply says that if you take a vector ##A_{\nu}## at a point ##x## and parallel transport it to every point in the space, you have a vector field ##A_{\nu}(x)## with ##A_{\nu:\sigma}=0##. That's where I am stuck.
He is saying that if the parallel transport of ##A_\nu## from ##x## to ##y## is path-independent, then ##A_{\nu:\sigma}=0.##
Now, ##A_{\nu}(y)=A_{\nu}(x)+\int_{C}A_{\nu:\sigma}dx^\sigma## for any path ##C## from ##x## to ##y.## Equivalently, ##\oint_{C}A_{\nu:\sigma}dx^\sigma=0.## How does this imply ##A_{\nu:\sigma}=0##?
It seems like quite a strong statement to assert that ##A_{\nu:\sigma:\rho}=A_{\nu:\rho:\sigma}## implies ##A_{\nu:\sigma}=0##.
Is there a simple explanation in the simple (calculus-component based) language of Dirac's book?
Edit: Dirac's assertion cannot be correct. The contrapositive would be ##A_{\nu:\sigma}\neq 0## implies ##A_{\nu:\sigma:\rho}\neq A_{\nu:\rho:\sigma}##, which is plainly false: take ##A_{\nu:\sigma}(x) = \text{constant}.##
Last edited: