- #1
Drain Brain
- 144
- 0
I came across this problem and solved it using different approach. I get a slightly different answers.
here's how it goes,
1st approach
$\mathscr{L}[te^{2t}\cos(3t)]$
first I get the laplace of something that's familiar to me which is $\mathscr{L}[t\cos(3t)]$
using this $\mathscr{L}[t^nf(t)]=(-1)^n\frac{d^n}{ds^n}\mathscr{L}[f(t)]$ $\mathscr{L}[t\cos(3t)]= -\frac{d}{ds}\left(\frac{s}{s^2+9}\right)$
=$ -\left(\frac{(s^2+9)(1)-s(2s)}{(s^2+9)^2}\right) = \frac{-s^2-9+2s^2}{(s^2+9)^2} = \frac{s^2-9}{(s^2+9)^2}$
shift:
$\mathscr{L}[te^{2t}\cos(3t)]= \frac{(s-2)^2-9}{\left((s-2)^2+9\right)^2}=\frac{s^2-4s+4-9}{\left(s^2-4s+4+9\right)^2} = \frac{s^2-4s-5}{\left(s^2-4s+13\right)^2}$
$\mathscr{L}[te^{2t}\cos(3t)]= \frac{s^2-4s-5}{\left(s^2-4s+13\right)^2}$***
2nd approach
First I get $\mathscr{L}[e^{2t}\cos(3t)]$
using $\mathscr{L}[e^{\alpha t}f(t)] = F(s-\alpha)$
$\mathscr{L}[e^{2t}\cos(3t)]$ --->>> $\mathscr{L}[\cos(3t)] = \frac{s}{s^2+9}|_{s-->s-2} = \frac{s-2}{s^2-4s+13} $
now using $\mathscr{L}[t^nf(t)]=(-1)^n\frac{d^n}{ds^n}\mathscr{L}[f(t)]$
=$ -\frac{d}{ds}\left(\frac{s-2}{s^2-4s+13}\right) = (s-2)\frac{d}{ds}(s^2-4s+13)^{-1}+(s^2-4s+13)^{-1}\frac{d}{ds}(s-2)$
= $(s-2)(-(s^2-4s+13)^{-2}(2s-4))+(s^2-4s+13)^{1}$
=$-(s^2-4s+13)^{-2}(2s-4)(s-2)+(s^2-4s+13)^{-1}$
=$-(s^2-4s+13)^{-2}(2s^2-8s+8)+(s^2-4s+13)^{-1}$
=$-\frac{2s^2-8s+8}{(s^2-4s+13)^2}+\frac{1}{(s^2-4s+13)}$
= $\frac{-2s^2+8s-8+s^2-4s+13}{(s^2-4s+13)^2}$
= $\frac{-s^2+4s+5}{(s^2-4s+13)^2}$
$\mathscr{L}[te^{2t}\cos(3t)]=\frac{-s^2+4s+5}{(s^2-4s+13)^2}$ ***
I can't figure out why they were different please help me to spot the error.
thanks!I think I found it! arghhh I'm kind of sleepy I missed the -1 on the 2nd method!(Headbang)(Headbang)
Last edited: