A Why Are the Peaks at Δ = 0 and Δ = ω_m Equally High?

LionCereals
Messages
1
Reaction score
0
TL;DR Summary
How can I explain the average occupation numbers of a coupled cavity-mirror system?
I am considering the following Hamiltonian:
$$H = -\Delta a^{\dagger}a + \omega_m b^{\dagger}b + g_0 * a^{\dagger}a (b + b^{\dagger})$$
which is the interaction picture optomechanical Hamiltonian for a cavity with movable end mirror. The mirror vibrations are quantized, leading to phonons that are annihilated / created using ##b, b^{\dagger}##. Photons in one cavity mode are created with ##a^{\dagger}##.

I have plotted the steady-state solution for the average photon number in the cavity, ##n_C##, and the average phonon number in the mirror, ##n_M## as a function of detuning. For this, I used QUTIP and obtained, with the y-axis on log scale (see attachment).This is the typical Lorentzian resonance curve. Now, we clearly see that there are peaks corresponding to ##\Delta = \omega_m$## and ##\Delta = 0##.
I understand the peak at ##\Delta = 0## as then there are lots of photons inside the cavity, so we have a high average photon number and thus a high effective coupling to the mirror, as ##g_0 * n_a## is large.

What I don't understand, however, is why the second peak at ##+\omega_m## is as high as the first peak. Clearly there, we have ##\omega_{in} = \omega_C + \omega_m##, such that the photon - phonon scattering process is resonant. But why has it the same height?

From what I see, if we have (on average) as many phonons in the mirror at ##\Delta = \omega_m## as at ##\Delta = 0##, then the effective coupling strength at both detunings should be equal. But clearly, in the former case there are less photons in the cavity, as they are not resonant with the cavity frequency?
 

Attachments

  • HW2_3_3b_final.png
    HW2_3_3b_final.png
    13.1 KB · Views: 151
Physics news on Phys.org
LionCereals said:
I am considering the following Hamiltonian:
$$H = -\Delta a^{\dagger}a + \omega_m b^{\dagger}b + g_0 * a^{\dagger}a (b + b^{\dagger})$$
which is the interaction picture optomechanical Hamiltonian for a cavity with movable end mirror.
May I know where did you find this Hamiltonian? Would you cite the paper/book?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top