- #1
damndamnboi
- 5
- 0
i would like to find the area bounded by the curve
(((x^2)/(a^2))+((y^2)/(b^2)))=xy/(c^2)
i used the substitution given x=(ar)cos(theta) and y=(ar)sin(theta)
i get :
(r^2cos^2(theta)+r^2sin^2(theta))^2=xy/(c^2)
thus r^4=xy/(c^2)
substituting x=(ar)cos(theta) and y=(ar)sin(theta) on the right hand side, i get
r^4=(r^2)(ab(cos<theta>)(sin<theta>)/c^2
then r^2=ab(cos<theta>)(sin<theta>)/c^2
then i used jacobian to transform dxdy to drd(theta):
i get abr(dr)(d(theta))
then i carried out the double integral
-- --
/ /
/ / abr(dr)(d(theta))
-- --
but i get 0. please advice
(((x^2)/(a^2))+((y^2)/(b^2)))=xy/(c^2)
i used the substitution given x=(ar)cos(theta) and y=(ar)sin(theta)
i get :
(r^2cos^2(theta)+r^2sin^2(theta))^2=xy/(c^2)
thus r^4=xy/(c^2)
substituting x=(ar)cos(theta) and y=(ar)sin(theta) on the right hand side, i get
r^4=(r^2)(ab(cos<theta>)(sin<theta>)/c^2
then r^2=ab(cos<theta>)(sin<theta>)/c^2
then i used jacobian to transform dxdy to drd(theta):
i get abr(dr)(d(theta))
then i carried out the double integral
-- --
/ /
/ / abr(dr)(d(theta))
-- --
but i get 0. please advice
Last edited: