- #1
Dustinsfl
- 2,281
- 5
The domain is \(0\leq x < \infty\) and \(0\leq y\leq b\).
\begin{align*}
\phi(x, 0) &= f(x)\\
\phi(x, b) &= 0
\end{align*}
I want to show that
\[
\phi(x, y) = \frac{1}{\pi}\int_0^{\infty} \int_{-\infty}^{\infty}f(\xi) \frac{\sinh[u(b - y)]}{\sinh(ub)} \cos[u(\xi - x)]d\xi du
\]
Why isn't the periodic function cosine used on y? How should this be started then?
\begin{align*}
\phi(x, 0) &= f(x)\\
\phi(x, b) &= 0
\end{align*}
I want to show that
\[
\phi(x, y) = \frac{1}{\pi}\int_0^{\infty} \int_{-\infty}^{\infty}f(\xi) \frac{\sinh[u(b - y)]}{\sinh(ub)} \cos[u(\xi - x)]d\xi du
\]
Why isn't the periodic function cosine used on y? How should this be started then?