- #1
Ebby
- 41
- 14
- Homework Statement
- Explain the First Order Linear D.E. method
- Relevant Equations
- Can you explain the step shown below?
If we have a first order d.e. like: $$\frac {dy} {dx} - \frac y x = 1$$
I would use two subs, namely: ##y = uv## and ##\frac {dy} {dx} = u \frac {dv} {dx} + v \frac {du} {dx}##
So I get: ##\frac {dy} {dx} = u \frac {dv} {dx} + v \frac {du} {dx} - \frac {uv} {x} = 1##
I then factor like this: ##\frac {dy} {dx} = u \frac {dv} {dx} + v (\frac {du} {dx} - \frac {u} {x}) = 1##
I am then told that I can make ##\frac {du} {dx} - \frac {u} {x} = 0##. *Why* can I do this?
I would use two subs, namely: ##y = uv## and ##\frac {dy} {dx} = u \frac {dv} {dx} + v \frac {du} {dx}##
So I get: ##\frac {dy} {dx} = u \frac {dv} {dx} + v \frac {du} {dx} - \frac {uv} {x} = 1##
I then factor like this: ##\frac {dy} {dx} = u \frac {dv} {dx} + v (\frac {du} {dx} - \frac {u} {x}) = 1##
I am then told that I can make ##\frac {du} {dx} - \frac {u} {x} = 0##. *Why* can I do this?