- #36
QuantStart
- 5
- 1
So, this discussion is revived after a year, by challenging my stressing the role of the absence of the time lag, i.e., the simple feature often (but somewhat imprecisely) called the "instantaneous" emission. Thus, I will refute monish's criticism and elaborate last year's argument, hoping to finish before leaving for New Years Eve...
Among other things, monish said:
No. In fact, I did not rely on assuming a tiny area scale anywhere in
my argument; you ascribe me this assumption groundlessly. I did not specify
a value for the area A since it was not essential for the argument. (In a
quantitative illustration I give below, I will even use a macroscopic value for A.)
However, you seem to have missed my point that weakening of the CLASSICAL
electric field squared is bound to produce an experimentally unacceptable
time lag if the conservation of energy holds. I mean the experiments which,
in the post #19, vanesch refers to as "that old experiment with faint
illumination ..." where even for very low intensity of radiation no time
delays "were ever observed, at least none longer than 10^-9 sec" (last quote is
from Gasiorowicz's "Quantum Physics", 2nd edition, Wiley 1996, which may be
a typical example of textbooks criticized here because of photo-effect). While
vanesch argued that the absence of such time lags does not provide anything
against classical EM field (i.e., in favor of photons) because the probability
of transition is immediately non-zero (which is correct), his argument neglects
the issue of the energy conservation.
These old experiments and analyses showed already at the order of 10^-9 seconds
that the classical EM field has the trouble with energy conservation, and the term
"instantaneous emission" seemed appropriate then.
Now one should speak of time delays (lags), since nowadays, as ZapperZ
pointed out in post #18, experiments can measure the finite response time,
ranging from fs to ps time scale. So no wonder that these old experiments
seem somewhat forgotten, since fs to ps time scale is 1000 to 10^6 times
SHORTER than 10^-9 s, the time scale which was however already sufficient
to demonstrate (by these old experiments) the trouble with energy conservation
for the classical field in photo-effect.
Namely, as I pointed out in my first post (post #25 of this thread), the
energy exceeding the work function W can be supplied by the CLASSICAL
EM field on the surface A only in time exceeding
W /( A c epsilon_0 [E^2] )
where [E^2] denotes the average value of the electric field E squared,
c is the velocity of light, and epsilon_0 is the vacuum permittivity.
Let us take the case of a gold (Au) laboratory sample, where W = 5.1 eV.
Also, since several posts after monish's post #27 deal with the cross-section of
a classical antenna and the like, claiming that the argument of "instantaneous
emission/no time delay" is the result of calculating with the wrong cross-section,
i.e., single-atom cross-section, let us assume a MACROSCOPIC value for the
surface, one millimeter squared,
A = 1 mm^2
which is a conceivable surface area of our laboratory sample.
Then, for the electric field E = 1 V/m, the time exceeds 0.3 nanoseconds,
as W /( A c epsilon_0 [E^2] ) = 0.307 x 10^-9 s,
and for the electric field E = 0.1 V/m, the time lag exceeds 3x10^-8 s,
as W /( A c epsilon_0 [E^2] ) = 3.07 x 10^-8 s,
etc., etc.
To summarize:
The classical EM field has a continuous Poynting vector, continuous energy
and momentum density, and delivers energy in a continuous manner, so that
the issue of the energy conservation (stressed in my first post) cannot be
neglected; that is, it is among the simple properties of photo-effect, and
through the absence of time lags for weak EM fields shows the need for the
EM field quanta - photons, although other simple features of the photoelectric
effect can be explained semiclassically.
Among other things, monish said:
monish said:... ...
OK, we know where this argument leads. The spread-out wave energy is much too diffuse to be able to concentrate itself in the tiny cross-sectional area of an electron in such a short time as is observed experimentally. Usually people use the cross-sectional area of an atom to justify this claim.
...
... ... If analyzed classically, its absorption crossection is on the order of 10,000,000 angstroms squared. This is much much greater than the size of the atom. That's why it can absorb enough energy to drive the transition between the two states.
What about the classical photo-electric effect?. I believe that the electron wave functions as calculated by band theory can be as big as the whole piece of metal. So there is no justification for trying to limit the absorption cross-section to a tiny area. ...
No. In fact, I did not rely on assuming a tiny area scale anywhere in
my argument; you ascribe me this assumption groundlessly. I did not specify
a value for the area A since it was not essential for the argument. (In a
quantitative illustration I give below, I will even use a macroscopic value for A.)
However, you seem to have missed my point that weakening of the CLASSICAL
electric field squared is bound to produce an experimentally unacceptable
time lag if the conservation of energy holds. I mean the experiments which,
in the post #19, vanesch refers to as "that old experiment with faint
illumination ..." where even for very low intensity of radiation no time
delays "were ever observed, at least none longer than 10^-9 sec" (last quote is
from Gasiorowicz's "Quantum Physics", 2nd edition, Wiley 1996, which may be
a typical example of textbooks criticized here because of photo-effect). While
vanesch argued that the absence of such time lags does not provide anything
against classical EM field (i.e., in favor of photons) because the probability
of transition is immediately non-zero (which is correct), his argument neglects
the issue of the energy conservation.
These old experiments and analyses showed already at the order of 10^-9 seconds
that the classical EM field has the trouble with energy conservation, and the term
"instantaneous emission" seemed appropriate then.
Now one should speak of time delays (lags), since nowadays, as ZapperZ
pointed out in post #18, experiments can measure the finite response time,
ranging from fs to ps time scale. So no wonder that these old experiments
seem somewhat forgotten, since fs to ps time scale is 1000 to 10^6 times
SHORTER than 10^-9 s, the time scale which was however already sufficient
to demonstrate (by these old experiments) the trouble with energy conservation
for the classical field in photo-effect.
Namely, as I pointed out in my first post (post #25 of this thread), the
energy exceeding the work function W can be supplied by the CLASSICAL
EM field on the surface A only in time exceeding
W /( A c epsilon_0 [E^2] )
where [E^2] denotes the average value of the electric field E squared,
c is the velocity of light, and epsilon_0 is the vacuum permittivity.
Let us take the case of a gold (Au) laboratory sample, where W = 5.1 eV.
Also, since several posts after monish's post #27 deal with the cross-section of
a classical antenna and the like, claiming that the argument of "instantaneous
emission/no time delay" is the result of calculating with the wrong cross-section,
i.e., single-atom cross-section, let us assume a MACROSCOPIC value for the
surface, one millimeter squared,
A = 1 mm^2
which is a conceivable surface area of our laboratory sample.
Then, for the electric field E = 1 V/m, the time exceeds 0.3 nanoseconds,
as W /( A c epsilon_0 [E^2] ) = 0.307 x 10^-9 s,
and for the electric field E = 0.1 V/m, the time lag exceeds 3x10^-8 s,
as W /( A c epsilon_0 [E^2] ) = 3.07 x 10^-8 s,
etc., etc.
To summarize:
The classical EM field has a continuous Poynting vector, continuous energy
and momentum density, and delivers energy in a continuous manner, so that
the issue of the energy conservation (stressed in my first post) cannot be
neglected; that is, it is among the simple properties of photo-effect, and
through the absence of time lags for weak EM fields shows the need for the
EM field quanta - photons, although other simple features of the photoelectric
effect can be explained semiclassically.