- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the proof of the proposition:
$$\text{The relation } \epsilon_{\omega}=\{ \langle m,n \rangle \in \omega^2: m \in n\} \text{ is trichotomous on } \omega.$$
Proof:
We define the sets: $T_m=\{ n \in \omega: m \in n \lor m=n \lor n \in m\},m \in \omega$
It suffices to show that for each $m \in \omega, T_m=\omega.$
(because if $m,n \in \omega$ then from the above we have that $T_m=\omega$ and so $n \in \omega=T_m \rightarrow n \in m \lor n=m \lor m \in n$)
For each $n \in \omega, \varnothing \subset n$ and so
$\varnothing \in n \lor \varnothing=n$.
Therefore for each $n \in \omega, n \in T_{\varnothing}=T_0$, i.e. $T_0=\omega$
Induction hypothesis: $T_{m}=\omega$
We will show that $T_{m'}=\omega$
If we show the above then the set $\{ m \in \omega: T_m=\omega \}$ is inductive and so $\{ m \in \omega: T_m=\omega \}=\omega$
For each $n \in \omega$ we have $m \in n \lor m=n \lor n \in m$
Therefore we have $m' \in n \lor m'=n \lor n \in m'$.
Thus $T_{m'}=\omega$.Could you explain me why we can write the set like that: $\{ m \in \omega: T_m=\omega \}$ ? (Thinking)
I am looking at the proof of the proposition:
$$\text{The relation } \epsilon_{\omega}=\{ \langle m,n \rangle \in \omega^2: m \in n\} \text{ is trichotomous on } \omega.$$
Proof:
We define the sets: $T_m=\{ n \in \omega: m \in n \lor m=n \lor n \in m\},m \in \omega$
It suffices to show that for each $m \in \omega, T_m=\omega.$
(because if $m,n \in \omega$ then from the above we have that $T_m=\omega$ and so $n \in \omega=T_m \rightarrow n \in m \lor n=m \lor m \in n$)
For each $n \in \omega, \varnothing \subset n$ and so
$\varnothing \in n \lor \varnothing=n$.
Therefore for each $n \in \omega, n \in T_{\varnothing}=T_0$, i.e. $T_0=\omega$
Induction hypothesis: $T_{m}=\omega$
We will show that $T_{m'}=\omega$
If we show the above then the set $\{ m \in \omega: T_m=\omega \}$ is inductive and so $\{ m \in \omega: T_m=\omega \}=\omega$
For each $n \in \omega$ we have $m \in n \lor m=n \lor n \in m$
- If $n \in m \lor m=n$, then $n \in m'$
- If $m \in n \rightarrow \{ m \} \subset n \wedge m \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m' \subset n$
So $m' \in n \lor m'=n$
Therefore we have $m' \in n \lor m'=n \lor n \in m'$.
Thus $T_{m'}=\omega$.Could you explain me why we can write the set like that: $\{ m \in \omega: T_m=\omega \}$ ? (Thinking)