MHB Why Can't a Right Triangle Have Sides that Add Up to the Area of Squares?

  • Thread starter Thread starter Ziggletooth
  • Start date Start date
  • Tags Tags
    Area Confused
AI Thread Summary
A right triangle's sides must satisfy the Pythagorean theorem, which states that the sum of the squares of the two shorter sides equals the square of the longest side. In the given problem, the areas of the squares on the triangle's sides are a^2 = 18, b^2 = 7, and c^2 = 27. The calculation shows that 18 + 7 does not equal 27, indicating that the triangle cannot be a right triangle. Additionally, the theorem does not imply that the lengths themselves can be added directly; rather, the squares of the lengths must be compared. Therefore, the confusion arises from misunderstanding the relationship defined by the theorem.
Ziggletooth
Messages
5
Reaction score
0
So I've been working on Pythagorean stuff and it's pretty straight forward but then I got confused over something quite simple.

It's a geometry question so I'll try my best to illustrate the question.

So there's a triangle and we must evaluate whether it's a right angle. The lengths are not provided but each side of the triangle is also the side a square. So if we can find the length of a side from each square we can find out whether the triangle is a right triangle using the Pythagorean theorem.

The areas of the squares are provided.

The problem is the values say
a^2 = 18
b^2 = 7
c^2 = 27

Now the answer is 18 + 7 != 27 so it's not a right angle but I'm looking at this and thinking that if area is side^2 and it's a^2 = 18 then isn't the side a = sqr(18)?

So then I walk into a quagmire of sqr(18) + sqr(7) ?= sqr(27)... So what's wrong with me? I mean, the short answer.
 
Mathematics news on Phys.org
Ziggletooth said:
So I've been working on Pythagorean stuff and it's pretty straight forward but then I got confused over something quite simple.

It's a geometry question so I'll try my best to illustrate the question.

So there's a triangle and we must evaluate whether it's a right angle. The lengths are not provided but each side of the triangle is also the side a square. So if we can find the length of a side from each square we can find out whether the triangle is a right triangle using the Pythagorean theorem.

The areas of the squares are provided.

The problem is the values say
a^2 = 18
b^2 = 7
c^2 = 27

Now the answer is 18 + 7 != 27 so it's not a right angle but I'm looking at this and thinking that if area is side^2 and it's a^2 = 18 then isn't the side a = sqr(18)?

So then I walk into a quagmire of sqr(18) + sqr(7) ?= sqr(27)... So what's wrong with me? I mean, the short answer.

No quagmire at all.

The Pythagorean Theorem states $a^{2} + b^{2} = c^{2}$.
It says nothing of the $a + b = c$ sort. Thus, why does it concern you?
 
In fact, for a, b, c the lengths of the three sides of any triangle, you can't have "a+ b= c". You must have a+ b> c.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top