- #36
- 11,308
- 8,744
What a great provocative question Scott.
If neutrinos were stationary so that they could be located within a nucleus or within a hadron, for an indefinite period of time, then I guessed that interactions might be much more likely. I know that interactions between free neutrons and nuclei are hugely dependent on relative velocities, why should neutrinos be different?
Since we have never seen slow neutrinos, I presume that experimental physics has no data on the interaction properties of slow neutrinos. That is why I intended my original post to be directed at theoretical physics rather than experimental physics. Photons must move at velocity c. Fermions must obey the Pauli exclusion principle. Those properties can be derived from the wave functions. I am curious to learn if there are analogous theoretical principles for neutrinos that dictate their peculiar properties.
If neutrinos were stationary so that they could be located within a nucleus or within a hadron, for an indefinite period of time, then I guessed that interactions might be much more likely. I know that interactions between free neutrons and nuclei are hugely dependent on relative velocities, why should neutrinos be different?
Since we have never seen slow neutrinos, I presume that experimental physics has no data on the interaction properties of slow neutrinos. That is why I intended my original post to be directed at theoretical physics rather than experimental physics. Photons must move at velocity c. Fermions must obey the Pauli exclusion principle. Those properties can be derived from the wave functions. I am curious to learn if there are analogous theoretical principles for neutrinos that dictate their peculiar properties.