- #1
Bachelier
- 376
- 0
On Page 106 in baby rudin (diff. chapter) when he tries to calculate the derivative of the fuction
$$f(x) = \begin{cases}
x^2 sin(\frac{1}{x}) & \textrm{ if }x ≠ 0 \\
0 & \textrm{ if }x = 0 \\
\end{cases}$$
rudin used the absolute value in trying to compute the limit as ##t → 0##
##i.e##
##\left|\frac{f(t) - f(0)}{t - 0}\right| = \left|t \ sin(\frac{1}{x})\right| ≤ |t|##
Why the abs. value?
$$f(x) = \begin{cases}
x^2 sin(\frac{1}{x}) & \textrm{ if }x ≠ 0 \\
0 & \textrm{ if }x = 0 \\
\end{cases}$$
rudin used the absolute value in trying to compute the limit as ##t → 0##
##i.e##
##\left|\frac{f(t) - f(0)}{t - 0}\right| = \left|t \ sin(\frac{1}{x})\right| ≤ |t|##
Why the abs. value?