MHB Why do combination and permutation have different rules for order?

  • Thread starter Thread starter nycmathdad
  • Start date Start date
AI Thread Summary
The discussion centers on the difference between combinations and permutations, specifically in the context of awarding "Best in Show" and "Honorable Mention" at a dog show with five finalists. The problem is identified as a permutation issue because the order of awards matters, leading to a calculation of 5P2, which equals 20 different ways to assign the awards. Participants emphasize that while the terminology is important, the focus should be on understanding the underlying concept rather than getting bogged down in definitions. The conversation highlights the relevance of order in permutations versus combinations, with a suggestion to consult textbooks for deeper understanding. Overall, the key takeaway is that the distinction between combinations and permutations is crucial when order is a factor in the outcome.
nycmathdad
Messages
74
Reaction score
0
At a recent dog show, there were 5 finalists. One of the finalists was awarded "Best in Show" and another finalist was awarded "Honorable Mention." In how many different ways could the two awards be given out?

The words "how many ways" reminds of probability. I just don't recall if this is a combination or a permutation.

I will take a guess and say this is a combination problem.

The set up is 5C2.

You say?
 
Mathematics news on Phys.org
Beer soaked ramblings follow.
nycmathdad said:
At a ...
I will take a guess and say this is a combination problem.

The set up is 5C2.

You say?
I say stop guessing.
You have a textbook.
Look it up laddie.
 
Personally, I would not worry about what it is called! There are 5 dogs anyone of which could be declared "best in show". Once that had been chosen, there are 4 dogs left that could be chosen "honorable mention".

There are a total of 5(4)= 20 ways that could be done.

(Since order, which dog is "best in show" and which is "honorable mention", is relevant, this is a "permutation" problem but, as I say, that is really not important.)
 
Country Boy said:
Personally, I would not worry about what it is called! There are 5 dogs anyone of which could be declared "best in show". Once that had been chosen, there are 4 dogs left that could be chosen "honorable mention".

There are a total of 5(4)= 20 ways that could be done.

(Since order, which dog is "best in show" and which is "honorable mention", is relevant, this is a "permutation" problem but, as I say, that is really not important.)

Are you saying that that 5C2 should be 5P2?

Let me see.

5P2 = 5!/(5 - 2)!

5P2 = 120/(3)!

5P2 = 120/6

5P2 = 20 ways.

When it comes to combination versus permutation, in terms of combination order does matter. Order does not matter in terms of permutation. Can you explain why that is the case using a simple math example for both cases?
 
nycmathdad said:
...
When it comes to combination versus permutation, in terms of combination order does matter. Order does not matter in terms of permutation. Can you explain why that is the case using a simple math example for both cases?
There you go again asking volunteer helpers to post a war and peace explanation for something that you could just read from your textbook. Read your book. Reading is good for you.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top