- #1
gersetaffe
- 4
- 0
Hi,
Wanted to know if anyone could explain why if you simplify an expression into a different equivalent form, the integrations are different depending on which form you use.
For example:
[itex]\frac{1}{\frac{5x}{7}+3}[/itex] = [itex]\frac{1}{\frac{5}{7}(x+4.2)}[/itex]
[itex]\int[/itex][itex]\frac{1}{\frac{5x}{7}+3}[/itex]dx = [itex]\frac{7}{5}[/itex]ln([itex]\frac{5x}{7}[/itex]+3)
while
[itex]\int[/itex][itex]\frac{1}{\frac{5}{7}(x+4.2)}[/itex]dx = [itex]\frac{7}{5}[/itex]ln(x+4.2)
The two integrations are not equal despite having integrated two equivalent expressions. The issue is if I had to integrate [itex]\frac{1}{\frac{5x}{7}+3}[/itex] I would simplify it to
[itex]\frac{1}{\frac{5}{7}(x+4.2)}[/itex] which gives a different integration than the original expression.
Thanks for any input
Wanted to know if anyone could explain why if you simplify an expression into a different equivalent form, the integrations are different depending on which form you use.
For example:
[itex]\frac{1}{\frac{5x}{7}+3}[/itex] = [itex]\frac{1}{\frac{5}{7}(x+4.2)}[/itex]
[itex]\int[/itex][itex]\frac{1}{\frac{5x}{7}+3}[/itex]dx = [itex]\frac{7}{5}[/itex]ln([itex]\frac{5x}{7}[/itex]+3)
while
[itex]\int[/itex][itex]\frac{1}{\frac{5}{7}(x+4.2)}[/itex]dx = [itex]\frac{7}{5}[/itex]ln(x+4.2)
The two integrations are not equal despite having integrated two equivalent expressions. The issue is if I had to integrate [itex]\frac{1}{\frac{5x}{7}+3}[/itex] I would simplify it to
[itex]\frac{1}{\frac{5}{7}(x+4.2)}[/itex] which gives a different integration than the original expression.
Thanks for any input