- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Nerd)
I am looking at the following exercise:
Prove that for all sets $A,B$, there are the sets:
$$\{ A \cap x: x \in B \} \text{ and } \{ A \cup x: x \in B \}$$
Show that:
$$y: \exists x \in B (y=A \cap x) \rightarrow y \in \mathcal{P}(A \cap (\bigcup B))$$
How do we conclude that $y \in \mathcal{P}(A \cap (\bigcup B))$ ? (Thinking)
I am looking at the following exercise:
Prove that for all sets $A,B$, there are the sets:
$$\{ A \cap x: x \in B \} \text{ and } \{ A \cup x: x \in B \}$$
Show that:
- $A \cap \bigcup B=\bigcup \{ A \cap x: x \in B\} $
- for $B \neq \varnothing$, $A \cap \bigcup B=\bigcap \{ A \cap x: x \in B$
$$y: \exists x \in B (y=A \cap x) \rightarrow y \in \mathcal{P}(A \cap (\bigcup B))$$
How do we conclude that $y \in \mathcal{P}(A \cap (\bigcup B))$ ? (Thinking)