- #1
galipop
- 51
- 0
Hi All,
I have the following electric field E = c(2bxy, x^2+ay^2) where a,b and c are constants
1. I need to find the line integral [tex]\oint E \cdot dl[/tex] where the close integration path is defined by the triangle (0,0) (1,0) (1,1)
2. compute the surface integral [tex]\int\nabla \times E \cdot dA[/tex] where the surface is defined by the area of the triangle.
3. determine the constants a and b such that [tex]\nabla \times E=0[/tex] and [tex]\nabla \cdot E=0[/tex]. Compute the potential in this case.
can anyone get me started. thanks!
I have the following electric field E = c(2bxy, x^2+ay^2) where a,b and c are constants
1. I need to find the line integral [tex]\oint E \cdot dl[/tex] where the close integration path is defined by the triangle (0,0) (1,0) (1,1)
2. compute the surface integral [tex]\int\nabla \times E \cdot dA[/tex] where the surface is defined by the area of the triangle.
3. determine the constants a and b such that [tex]\nabla \times E=0[/tex] and [tex]\nabla \cdot E=0[/tex]. Compute the potential in this case.
can anyone get me started. thanks!