- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! ;)
Let $f: \mathbb{R} \to \mathbb{R}$ twice differentiable,such that $f''$ is bounded.We set $f_n(x)=n(f(x+\frac{1}{n})-f(x)), x \in \mathbb{R}$.Check the pointwise and uniform convergence of $f_n$.
$\lim_{n \to +\infty} {n(f(x+\frac{1}{n})-f(x))}=\lim_{n \to +\infty} {\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}}}=f'(x)$
So, $f_n \to f'$ pointwise.
$f''$ is bounded,so $\exists M>0$ such that $|f''| \leq M, \forall x \in \mathbb{R}$
From the Mean value Theorem,we have:
$$f_n(x)={\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}}}=f'(x+a_{n,x}), 0<a_{n,x}<\frac{1}{n}$$
Again,from the Mean value Theorem,we have:
$$\frac{f'(x+a_{n,x})-f'(x)}{a_{n,x}}=f''(x+b_{n,x}) , 0<b_{n,x}<a_{n,x}$$
Therefore, $|f_n(x)-f'(x)|=\frac{|f'(x+a_{n,x})-f'(x)|}{|a_{n,x}|} \cdot |a_{n,x}|=|f''(x+b_{n,x})| \cdot |a_{n,x}| \leq M \cdot |a_{n,x}| \leq \frac{M}{n} \to 0$
The above relation is true for each $x$,so $\sup_{x \in \mathbb{R}} {|f_n(x)-f'(x)|} \leq \frac{M}{n} \to 0$.
So, $f_n \to f'$ uniformly.But..why $a_{n,x}$ and $b_{n,x}$,that we get from the Mean Value Theorem,depend,except from $n$ also from $x$ ?
Let $f: \mathbb{R} \to \mathbb{R}$ twice differentiable,such that $f''$ is bounded.We set $f_n(x)=n(f(x+\frac{1}{n})-f(x)), x \in \mathbb{R}$.Check the pointwise and uniform convergence of $f_n$.
$\lim_{n \to +\infty} {n(f(x+\frac{1}{n})-f(x))}=\lim_{n \to +\infty} {\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}}}=f'(x)$
So, $f_n \to f'$ pointwise.
$f''$ is bounded,so $\exists M>0$ such that $|f''| \leq M, \forall x \in \mathbb{R}$
From the Mean value Theorem,we have:
$$f_n(x)={\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}}}=f'(x+a_{n,x}), 0<a_{n,x}<\frac{1}{n}$$
Again,from the Mean value Theorem,we have:
$$\frac{f'(x+a_{n,x})-f'(x)}{a_{n,x}}=f''(x+b_{n,x}) , 0<b_{n,x}<a_{n,x}$$
Therefore, $|f_n(x)-f'(x)|=\frac{|f'(x+a_{n,x})-f'(x)|}{|a_{n,x}|} \cdot |a_{n,x}|=|f''(x+b_{n,x})| \cdot |a_{n,x}| \leq M \cdot |a_{n,x}| \leq \frac{M}{n} \to 0$
The above relation is true for each $x$,so $\sup_{x \in \mathbb{R}} {|f_n(x)-f'(x)|} \leq \frac{M}{n} \to 0$.
So, $f_n \to f'$ uniformly.But..why $a_{n,x}$ and $b_{n,x}$,that we get from the Mean Value Theorem,depend,except from $n$ also from $x$ ?