- #1
Goklayeh
- 17
- 0
Hello everybody! I have a really silly question concerning wave equation: consider the problem
[tex]
\left\{
\begin{matrix}
u_{tt} &=& u_{xx} & x \in \mathbb{R}\\
u(x,0) &=& 0 & \\
u_t(x,0) &=& x(1-x)\chi_{\left[0,1\right]}(x)&
\end{matrix}
\right.
[/tex]
the solution is given by d'Alembert's formula
[tex]
u(x,t) = \int_{x-t}^{x+t}{y(1-y)\chi_{\left[0,1\right]}(y) \mathrm{d}y} =
\int_{\mathbb{R}}{y(1-y)\chi_{\left[0,1\right]\cap \left[x-t,x+t\right]}(y) \mathrm{d}y}
[/tex]
Now, it's clear that [tex]\forall x_0 \in \mathbb{R}\:\: \exists t_0[/tex] s.t. [tex]u(x_0,t) \ne 0\:\: \forall t > t_0[/tex]. For instance, fix [tex]x_0 = -1[/tex]. Then, for all [tex]t \ge 2[/tex], we have [tex]u(-1,t) = \int_0^1{(y - y^2)\mathrm{d}y} = \frac{1}{6}\ne 0[/tex]. But, physically, this means that the wave passes through [tex]x_0[/tex] definitively, i.e. for all enough big times. How is this possible? Or, where I'm wrong?
Thank you for your attention
[tex]
\left\{
\begin{matrix}
u_{tt} &=& u_{xx} & x \in \mathbb{R}\\
u(x,0) &=& 0 & \\
u_t(x,0) &=& x(1-x)\chi_{\left[0,1\right]}(x)&
\end{matrix}
\right.
[/tex]
the solution is given by d'Alembert's formula
[tex]
u(x,t) = \int_{x-t}^{x+t}{y(1-y)\chi_{\left[0,1\right]}(y) \mathrm{d}y} =
\int_{\mathbb{R}}{y(1-y)\chi_{\left[0,1\right]\cap \left[x-t,x+t\right]}(y) \mathrm{d}y}
[/tex]
Now, it's clear that [tex]\forall x_0 \in \mathbb{R}\:\: \exists t_0[/tex] s.t. [tex]u(x_0,t) \ne 0\:\: \forall t > t_0[/tex]. For instance, fix [tex]x_0 = -1[/tex]. Then, for all [tex]t \ge 2[/tex], we have [tex]u(-1,t) = \int_0^1{(y - y^2)\mathrm{d}y} = \frac{1}{6}\ne 0[/tex]. But, physically, this means that the wave passes through [tex]x_0[/tex] definitively, i.e. for all enough big times. How is this possible? Or, where I'm wrong?
Thank you for your attention