Why do the Sun's/star's luminosity increase during the main sequence?

In summary: It states: "...the composition of the core changes slowly as nucleosynthesis reduces the abundance of hydrogen. Decreases in pressure differences allow gravity to increase the density, temperature, and radius of the thermonuclear core."This should answer your remaining questions.
  • #1
astrostar
1
0
Hi,

I'm wondering why the Sun's luminosity has increased over time.
I have learned that every star in the main sequence also tend to increase their luminosity but I haven't figured out why.

Luminosity is related to star's radius and temperature so does these parameters rise during the star's main sequence?

That would explain the whole thing but does it work on highly massive stars which decrease their temperature?
Do these giant stars increase their radius to rise the luminosity?
 
Astronomy news on Phys.org
  • #2
As to why the Sun's luminosity increases with time:

As the Sun fuses hydrogen, the core begins to become "clogged up" with helium "ash", which would tend to damp out the fusion reaction. The helium ash also increases the density of the core. The result is that the temp and pressure goes up which increases the fusion rate which tends to overcompensate for the helium build up. The increased fusion rate causes the star's luminosity and radius to go up.
 
  • Like
Likes TEFLing
  • #3
Janus said:
As to why the Sun's luminosity increases with time:

As the Sun fuses hydrogen, the core begins to become "clogged up" with helium "ash", which would tend to damp out the fusion reaction. The helium ash also increases the density of the core. The result is that the temp and pressure goes up which increases the fusion rate which tends to overcompensate for the helium build up. The increased fusion rate causes the star's luminosity and radius to go up.

So the helium dampens fusion which raises the rate of fusion...
 
  • #4
Phrak said:
So the helium dampens fusion which raises the rate of fusion...
I know that it sounds odd, but consider this: helium is "heavier" than hydrogen and would tend to "sink" to the center of the core. This tends to snuff out the fusion at the center, but at the same time increases the density of the core. The core condenses, and as it does so, the temp and pressure goes up so that fusion can take place in the hydrogen shell surrounding the helium clogged core. So while fusion at the center goes down, it is more than made up for by an increase in fusion in the region surrounding the center.
 
  • #5
Additionally, you are adding electrons to the star, which increases the opacity. That also "clogs up the works", in this case the photon transport, which also increases the core temperature and increases the fusion rate. So as the opacity increases, the star gets brighter.
 
  • #6
I begins to make some sense, I suppose, Janus.

Vanadium. It seems to me, that for the star to shine brighter under conditions of greater opacity, it must be offset by a greater increase in temperature--or photon density. Is that right?
 
  • #8
Phrak said:
Vanadium. It seems to me, that for the star to shine brighter under conditions of greater opacity, it must be offset by a greater increase in temperature--or photon density. Is that right?

Yes. The star gets hotter.
 
  • #9
Arch2008 said:
http://www.calpoly.edu/~rfield/FatherSun.htm

This should answer your remaining questions.

Thanks, Arch, but not really.

It states: "...the composition of the core changes slowly as nucleosynthesis reduces the abundance of hydrogen. Decreases in pressure differences allow gravity to increase the density, temperature, and radius of the thermonuclear core."

I guess I'm just slow, but what implies decreases in pressure differences, and how dos this lead to an increase in density, temp, and radius of the reactive core?
 
  • #10
Don’t be so hard on yourself, Phrak. It took the combined genius of the world millennia to figure this out. A star is sort of a wrestling match between the fusion at the core causing an outward pressure that almost rips it apart and the gravity of its mass trying to crush it into a dense point. The hydrogen at the core is converted into helium by fusion (a process known as nucleosynthesis). The core is not yet hot enough to convert the helium into say, carbon, so the helium collects at the core. This slows the fusion of hydrogen and causes the outward pressure of the fusion explosion to lessen. Relatively speaking, the core cools. With less outward pressure, gravity starts to win and compresses the core more than it had previously. This increases the density of the core as gravity tries to crush everything together. In turn, increased density causes the temperature to rise and the volume that is undergoing nucleosynthesis increases as well, i.e., a greater radius of the core fuses.

This process is very noticeable in a type of star called a Cepheid variable.
http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_pulsating.html
These stars vary rapidly in brightness as pressure and density change causing the star to actually pulsate.
 
Last edited by a moderator:
  • #11
I didn't think Cepheids pulsate because of anything in the core. I thought it was due to opacity in the envelope.
 
  • #12
You're right! That is what the link says.

I found another link with this description:

"But why does the star pulsate at all??
The textbook has a rather involved description involving the properties of a layer of ionized helium in the star's envelope. A simpler, stripped-down explanation goes something like this:
When a Cepheid is compressed, it becomes opaque.
Photons are trapped inside, heating the gas and increasing its pressure.
The high-pressure gas expands, becoming transparent.
Photons escape, the gas cools, the pressure drops.
As the pressure drops, the Cepheid is compressed by gravity.
This cycle repeats as long as the Cepheid (or the RR Lyrae, which pulsates by the same mechanism) is in the instability strip, the region of the H-R diagram where stars are unstable to pulsation. "
 
Last edited:

Related to Why do the Sun's/star's luminosity increase during the main sequence?

What is the main sequence of a star?

The main sequence is a period in the life cycle of a star where it is actively burning hydrogen in its core, giving off a stable amount of energy.

Why does the Sun's/star's luminosity increase during the main sequence?

The luminosity of a star increases during the main sequence because as the star burns hydrogen in its core, it produces more energy. This energy is released as light, making the star appear brighter.

How long does the main sequence last?

The length of the main sequence varies depending on the mass of the star. For stars like the Sun, the main sequence can last for billions of years. For more massive stars, it can be much shorter.

What happens at the end of the main sequence?

At the end of the main sequence, the hydrogen fuel in the star's core begins to run out. This causes the star to expand and cool, eventually leading to its death as a red giant or supernova.

Can the main sequence be observed in other types of stars?

Yes, the main sequence is observed in all types of stars that are actively burning hydrogen in their cores. This includes not only our Sun, but also other types of stars such as red dwarfs, blue giants, and yellow supergiants.

Similar threads

  • Astronomy and Astrophysics
Replies
11
Views
2K
  • Astronomy and Astrophysics
Replies
21
Views
2K
  • Astronomy and Astrophysics
Replies
5
Views
4K
  • Astronomy and Astrophysics
Replies
3
Views
1K
  • Astronomy and Astrophysics
Replies
9
Views
2K
  • Astronomy and Astrophysics
2
Replies
49
Views
3K
  • Astronomy and Astrophysics
Replies
3
Views
2K
  • Astronomy and Astrophysics
3
Replies
72
Views
6K
  • Astronomy and Astrophysics
3
Replies
75
Views
8K
  • Astronomy and Astrophysics
Replies
5
Views
2K
Back
Top