- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $V=C^1([a,b])$. Show that if $J$ is a continuous functional in respect to the norm $||y||_1:=||y||_{\infty}+||y'||_{\infty}, y \in V$ then it is also continuous in respect to the norm $||y||:=||y||_{\infty}$.
Also, show that the inverse of the above claim does not hold.
Let $y_1, y_2 \in C^1([a,b])$. Then,
$$||y_1-y_2||_1=||y_1-y_2||_{\infty}+||y_1'-y_2'||_{\infty} \geq ||y_1-y_2||_{\infty} (\star)$$
and so from $(\star)$ we have that if $(y_n)_{n=1}^{\infty} \subset C^1([a,b])$ and $y \in C^1([a,b])$ with $||y_n-y||_1 \to 0$ then $||y_n-y||_{\infty} \to 0$.
So the continuity of $J$ in respect to the norm $|| \cdot ||_1$ ensures the continuity of $J$ in respect to the norm $||\cdot||_{\infty}$.
Why having shown that if $||y_n-y||_1 \to 0$ then $||y_n-y||_{\infty} \to 0$ do we deduce the continuity of $J$ in respect to the norm $||\cdot||_{\infty}$? (Thinking)The definition of a continuous functional is the following:
Let $(V, ||\cdot||)$ be a linear space with norm and let $J:V \to \mathbb{R}$ be a functional.
We say that the functional $J: V \to \mathbb{R}$ is continuous at $y_0 \in V$ if for all $\epsilon>0$ there exists a $\delta>0$ such that whenever $||y-y_0||< \delta$ for $y \in V$ then $|J(y)-J(y_0)|< \epsilon$
(or equivalently, if $y_n \in V, n=1,2, \dots$ with $||y_n-y_0|| \to 0$ then $|J(y_n)-J(y_0)| \to 0$).
Let $V=C^1([a,b])$. Show that if $J$ is a continuous functional in respect to the norm $||y||_1:=||y||_{\infty}+||y'||_{\infty}, y \in V$ then it is also continuous in respect to the norm $||y||:=||y||_{\infty}$.
Also, show that the inverse of the above claim does not hold.
Let $y_1, y_2 \in C^1([a,b])$. Then,
$$||y_1-y_2||_1=||y_1-y_2||_{\infty}+||y_1'-y_2'||_{\infty} \geq ||y_1-y_2||_{\infty} (\star)$$
and so from $(\star)$ we have that if $(y_n)_{n=1}^{\infty} \subset C^1([a,b])$ and $y \in C^1([a,b])$ with $||y_n-y||_1 \to 0$ then $||y_n-y||_{\infty} \to 0$.
So the continuity of $J$ in respect to the norm $|| \cdot ||_1$ ensures the continuity of $J$ in respect to the norm $||\cdot||_{\infty}$.
Why having shown that if $||y_n-y||_1 \to 0$ then $||y_n-y||_{\infty} \to 0$ do we deduce the continuity of $J$ in respect to the norm $||\cdot||_{\infty}$? (Thinking)The definition of a continuous functional is the following:
Let $(V, ||\cdot||)$ be a linear space with norm and let $J:V \to \mathbb{R}$ be a functional.
We say that the functional $J: V \to \mathbb{R}$ is continuous at $y_0 \in V$ if for all $\epsilon>0$ there exists a $\delta>0$ such that whenever $||y-y_0||< \delta$ for $y \in V$ then $|J(y)-J(y_0)|< \epsilon$
(or equivalently, if $y_n \in V, n=1,2, \dots$ with $||y_n-y_0|| \to 0$ then $|J(y_n)-J(y_0)| \to 0$).