- #36
Mike400
- 59
- 6
I think I have got the answer. Please check its validity.Mike400 said:I know that electric field of an infinite sheet of charge in ##x##-##y## plane is ## \vec{E}=\frac{\sigma}{2 \epsilon_0} (\hat{k})##. From this fact, how can we conclude that electric field very close to the surface point of a ##\sigma## distribution is approximately ## \vec{E}=\frac{\sigma}{2 \epsilon_0} (\hat{n}) ## where ##\hat{n}## is normal to surface point.
Consider a ##\sigma## distribution and a point ##P## infinitely close to it. Then:
##\displaystyle\mathbf{H}(P)_1=\int_{S'} \dfrac{\sigma}{r^2}(\hat{\mathbf{r}})\ dS'##
Now increase the linear dimensions of the system infinitely. Then:
##\displaystyle\mathbf{H}(P)_{\infty}=\lim\limits_{n \to \infty} \int_{S'} \dfrac{\sigma}{(nr)^2} \left( \dfrac{n\mathbf{r}}{nr} \right) n^2 dS'
=\int_{S'} \dfrac{\sigma}{r^2}(\hat{\mathbf{r}})\ dS'=\mathbf{H}(P)_1##
Now after the increment, ##\sigma## distribution is an infinite sheet near point ##P##. Point ##P## is also at a finite distance from ##\sigma## distribution (infinite sheet). Therefore:
##\mathbf{H}(P)_1=\mathbf{H}(P)_{\infty}=\dfrac{\sigma}{2 \epsilon_0} (\hat{\mathbf{n}})##