- #1
QuickLoris
- 12
- 0
I recently struck a question that I have not been able to find an answer to. I feel like I'm missing something obvious, so I've come here for help.
The derivative of [itex]a^{x}[/itex] is [itex]a^{x}[/itex]lna.
The explanation that Stewart 5e gives is:
[itex]\frac{d}{dx}[/itex][itex]a^{x}[/itex] = [itex]\frac{d}{dx}[/itex][itex]e^{(lna)x}[/itex]
= [itex]e^{(lna)x}[/itex][itex]\frac{d}{dx}[/itex](lna)x
=[itex]e^{(lna)x}[/itex][itex]\cdot[/itex]lna
=[itex]a^{x}[/itex]lna
My question is: Why do we use the natural log instead of a log of any other base?
The derivative of [itex]a^{x}[/itex] is [itex]a^{x}[/itex]lna.
The explanation that Stewart 5e gives is:
[itex]\frac{d}{dx}[/itex][itex]a^{x}[/itex] = [itex]\frac{d}{dx}[/itex][itex]e^{(lna)x}[/itex]
= [itex]e^{(lna)x}[/itex][itex]\frac{d}{dx}[/itex](lna)x
=[itex]e^{(lna)x}[/itex][itex]\cdot[/itex]lna
=[itex]a^{x}[/itex]lna
My question is: Why do we use the natural log instead of a log of any other base?