Why does a free particle in an infinite well have uncertainty bigger than h/2 ?

AI Thread Summary
A free particle in an infinite well exhibits uncertainty greater than h/2 due to its wave function characteristics. The discussion revolves around identifying the wave function that achieves the minimum uncertainty, with a suggestion that a normal (Gaussian) curve might be the answer. The ground state of the harmonic oscillator is proposed as a potential solution, characterized by a specific Gaussian wave function. Clarification is provided that this Gaussian function is essential for reaching the lower bound of uncertainty. Understanding these wave functions is crucial for grasping quantum mechanics principles.
drop_out_kid
Messages
34
Reaction score
2
Homework Statement
verify the uncertainty principle by wave function of infinite well free particle(ground state)
Relevant Equations
\sai(x)=\sqrt {2/L} sin(Pi*x/L)dx
So I think I use the right approach and I get uncertainty like this:
1650392221348.png


And it's interval irrelevant(ofc),

So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
 
Physics news on Phys.org
Supplyment:
For <x^2>

1650392441964.png

for <x> it's simply L/2

for <p> it's simply 0

for <p^2> it's
1650392576119.png
by sin^2 integration.
 
drop_out_kid said:
So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
 
kuruman said:
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
 
drop_out_kid said:
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
You asked and I replied. It is a Gaussian, $$\psi_0(x)=\left(\frac{m\omega}{\pi \hbar}\right)^{1/4}e^{-\frac{m \omega}{2\hbar}x^2}.$$Try it.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top