- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Smile)
I am looking at the following exercise:
In general, the equation $X^2+Y^2=n$, when $n \equiv 3 \pmod 4$, has no rational solution.
According to my notes:
Let $x=\frac{a}{b}, y=\frac{c}{d}, a,b,c,d \in \mathbb{Z}, b \cdot d \neq 0, (a,b)=1, (c,d)=1$, solution of $X^2+Y^2=n$.
$$\frac{a^2}{b^2}+\frac{c^2}{d^2}=n \Rightarrow (ad)^2+(bc)^2=n(bd)^2$$
That means, that the equation $X^2+Y^2=n Z^2$ has an integer solution $(x_1, y_1, z_1)=(ad, bc, bd)$.
Without loss of generality, we suppose that $gcd(x_1,y_1,z_1)=1$.
If $2 \mid z_1 \Rightarrow x_1^2+y_1^2 \equiv 0 \pmod 4 \Rightarrow (2 \mid x_1 \wedge 2 \mid y_1) \Rightarrow 2 \mid (x_1,y_1,z_1)=1, \text{ Contradiction}$
Therefore, $z_1=2k+1, z_1^2 \equiv 1 \pmod 4$
$$\Rightarrow n z_1^2 \equiv n \cdot 1 \pmod 4 \equiv 3 \pmod 4$$
$$\Rightarrow x_1^2+y_1^2 \equiv 3 \pmod 4, \text{ Contradiction.}$$
Why do we check if $2 \mid z_1$ ? (Sweating)
I am looking at the following exercise:
In general, the equation $X^2+Y^2=n$, when $n \equiv 3 \pmod 4$, has no rational solution.
According to my notes:
Let $x=\frac{a}{b}, y=\frac{c}{d}, a,b,c,d \in \mathbb{Z}, b \cdot d \neq 0, (a,b)=1, (c,d)=1$, solution of $X^2+Y^2=n$.
$$\frac{a^2}{b^2}+\frac{c^2}{d^2}=n \Rightarrow (ad)^2+(bc)^2=n(bd)^2$$
That means, that the equation $X^2+Y^2=n Z^2$ has an integer solution $(x_1, y_1, z_1)=(ad, bc, bd)$.
Without loss of generality, we suppose that $gcd(x_1,y_1,z_1)=1$.
If $2 \mid z_1 \Rightarrow x_1^2+y_1^2 \equiv 0 \pmod 4 \Rightarrow (2 \mid x_1 \wedge 2 \mid y_1) \Rightarrow 2 \mid (x_1,y_1,z_1)=1, \text{ Contradiction}$
Therefore, $z_1=2k+1, z_1^2 \equiv 1 \pmod 4$
$$\Rightarrow n z_1^2 \equiv n \cdot 1 \pmod 4 \equiv 3 \pmod 4$$
$$\Rightarrow x_1^2+y_1^2 \equiv 3 \pmod 4, \text{ Contradiction.}$$
Why do we check if $2 \mid z_1$ ? (Sweating)